The Honda Cub is the best selling motor vehicle of all time, with over 100 million having been made in the years since 1958, when it was launched. Its origins are not in Japan, but in 1956 Europe when Honda co-founders Soichiro Honda (1906 – 1991) and Takeo Fujisawa (1910 – 1988) toured Germany and experienced the popularity of mopeds and other lightweight motorcycles.
Fujisawa was inspired, and wanted to produce a motorcycle for everyone: urban, rural or somewhere in between, living anywhere from a developed to an emerging economy. It had to be simple to survive in places without roads, advanced technology or access to reliable spare parts. It had to be quiet, reliable and easy to use. It also needed to have mass appeal, so that it could be produced on an enormous scale.
A scooter was considered but rejected: it was too complex for people in emerging economies, and, its wheels were too small for poorly maintained roads. Fujisawa specified ease of driving, by requiring that it could be driven with one hand while carrying a tray of soba noodles in the other. He is quoted as saying, “If you can design a small motorcycle, say 50 cc with a cover to hide the engine and hoses and wires inside, I can sell it. I don’t know how many soba noodle shops there are in Japan, but I bet you that every shop will want one for deliveries.”
Honda’s new vehicle was a 1958 Super Cub C100. It featured a low-floor backbone step-through pressed-steel frame. One important innovation, was their use of inexpensive but light weight plastic for the front fender and leg shields. This was the first motorcycle use of plastic. While the vehicle combined the characteristics of a scooter with the stability of a motorcycle. The 17-inch wheels, especially, gave the vehicle a stability not found in scooters. An automatic centrifugal clutch 3-speed transmission, and an air-cooled 4-stroke 49 cc (despite the model name) OHV engine, powered the vehicle. Top speed 65 km/h. Wheelbase 1 181 mm, Length 1 781 mm, Width 569 mm, Mass (wet) 65.0 kg.
The design was tested in advance of production, to eliminate any flaws. It would cost too much to fix problems after production started. It almost worked, except for an issue with the clutch, that required production and sales staff to visit each customer at home to fix each vehicle.
The early history of the Honda Cub will end here, with interested readers encouraged to either read the Wikipedia article or watch a more enjoyable but less extensive 8 minute video about it.
One challenge facing the world is reducing carbon emissions, and eliminating fossil fuels. This means transforming Honda Cubs into electric vehicles. So, even though Honda made an e-Cub prototype in 2019, they have never developed it into a production model. Why not? Is it because they are in too close a relationship with fossil fuel suppliers?
Shanghai Customs Ltd was founded by Alexander Style. It sells e-Cub kits throughout the world for US$ 2 800. There are three kits available for the C50, C70 and C90 models. The non-battery kit lacks more than just a battery. However, it claims to come with everything needed except a battery, charger, frame, front forks and front suspension. One step up is the full kit. The name is a misnomer, since it too is another partial kit, which is like the above kit but with a battery and charger. The full kit with frame and forks provides everything needed for an e-Cub build. Kits are designed for amateur installation, described as plug and play, with colour coded and numbered wiring. Assembly takes from about 15 hours of work, using only hand tools. The finished e-Cub is powered by a removable 1.3 kWh Panasonic battery that provides energy to a 1 000 W, rear hub motor, that can be boosted to 3 000 W for short periods. Top speed for the vehicle is still 65 km/h, with a range of 50 km. Included in the kit are new LED lights, and fully digital instrumentation.
Fully Charged YouTube channel presented a nine minute video about the company, and its conversion kits.
Phil Tucker commented 2021-02-25 on the YouTube video: “(Don’t get me wrong as I’m a massive “all electric” fan….) but I’m not necessarily convinced that someone who maybe bought an old hand me down cub off an older brother or sibling for say, fifty dollars to use to go to work on is then going to decide to spend 2500 dollars to go electric! Also I think some of those brand new Chinese electric bikes are actually cheaper than that?”
This brought several interesting replies including one from Siclmn Cyclerider: “I spent $6,000 on a Stromer electric bicycle.” However, several others commented on the need for improved brakes, that appear to come with the kit.
To put the e-Cub in perspective, it should probably be compared with a minimalist electric car, such as a Citroën Ami, measuring 2 410 mm in length, 1 390 mm (excluding mirrors) in width and 1 520 mm in height, with a total weight of 485 kg. It has a 6 kW electric motor operating at 48 V, and powered by a 5.5 kWh lithium-ion battery. It is registered as a light quadricycle for two, allowing a top speed of 45 km/h, and a range of 75 km. When it was first released, it came with a purchase price of $6 600, a leasing fee of $22 per month, or an on-demand rental for around $0.29 per minute.
One major difference between the two vehicles is that while the Ami is a purchase of a product, the e-Cub is buying parts for a project. This involves people with two totally different mindsets. The e-Cub will only appeal to people who have the desire, time and opportunity to customize their own vehicle. The Ami will only appeal to people who want to buy happiness.
Note: There will be no attempt to enter fruitless discussions about other best selling vehicles. Contenders will not even be named. The point of this weblog post is to examine a potential waste recycling challenge, that allows people to continue to use a perfectly good vehicle, despite its currently inappropriate power source, by replacing it with a suitable electric power train. Mopeds may not be for everyone, but this writer is convinced that in Inderøy they are part of a Rite of Spring where, much like the return of the swallows to Mission San Juan Capistrano, thousands of mopeds appear on the roads, allowing their 16-year old drivers to self-certify themselves as adults, and slowing traffic to 40 km/h. More mature readers, no longer subject to the excesses of teenage hormones, may prefer to see new opportunities that emerge from using a mobility scooter which, fortunately, are already electrified.
To this day, a Honda 50, probably a 1966 model, owned at the time by Victoria Ayerbe, is the only motorcycle I have ever driven, and only once. I have no intention of repeating this experience with either a fossil fuelled or electrified motorcycle. Indeed, I have no intention of converting a Honda Cub to an e-Cub. However, I would like to encourage people in Inderøy involved in the electrification of old scooterettes, as they were often called, possibly at Reodor, Inderøy’s bicycle repair shop. There could be other two-wheeled vehicle models that, because of local popularity, are more deserving to be adapted to electric power. Making kits for these could be an enjoyable community project. If readers have particular candidates for conversions, please tell other readers about them by making appropriate comments.
Four years ago today, on 2017-10-29, a weblog post titled Stuffing a 10-car garage was published. It presented a number of electric vehicles (EVs) that had awakened my curiosity over the years, along with one internal combustion engine (ICE) vehicle, the Citroën Berlingo. The one advantage of a virtual garage is that it is very easy to acquire and then dispose of vehicles.
The 2021 United Nations Climate Change Conference, the 26th held (COP26), is scheduled to begin 2021-10-31 in Glasgow, Scotland, two days after publication of this weblog post. The conference will end 2021-11-12. Hopefully something will be accomplished to prevent a climatic disaster.
EVs are not only increasing in number, but improving, technically and in terms of design. Unfortunately, most of this development is happening in vehicle segments that people should be avoiding . This weblog post presents six EVs made by six companies for six different segments from six different European countries. During the year this post has been in development, all of the models originally selected have departed the list, and been replaced by others. The number of continents represented has decreased from four to one, with an encouragement for people to buy locally produced products. I don’t believe I could do the same using North American products. Even, with this focus on smallish, affordable European EVs, it has been difficult.
Not many specifications are available for the selected vehicles at the time of publication. Those missing will be provided in subsequent updates, when I remember. The worst case situation in this post, is that of Fiat and its Giardiniera. Despite the initial hype and promises, at the moment it is looking more like vapourware. It is included to remind people that vapourware is a major problem in the automotive industry. It allows manufacturers to pretend that they are doing something, when in all likelihood nothing is happening at all.
In terms of the A segment, I had hoped that the Zetta CM1 had been developed further. I had wanted to put an improved Zetta in the A class, and even contacted the manufacturer, Russian Engineering and Manufacturing Company (REMC) in Toliatti about it. I received no reply to my email.
Segments D and above/ larger are ignored in this post out of concern for the environment.
Company
Model
Segment
Country
Nobe
500
Pickup
Estonia
Renault
Kangoo
MPV
France
Microlino
Microlino
Micro (L7e)
Switzerland
Freze
Nikrob
A
Latvia
Fiat
500 Giardiniera
B
Italy
Sono
Sion
C
Sweden
Six companies producing six vehicle models for six segments in six European countries.
Nobe 500
Pickups are typically regarded as American, so there would probably not have been many objections if this slot had been filled by any number of American vehicles including, in alphabetical order by brand, the Ford F-150 Lightning, the GMC Hummer, the Lordstown Endurance, the Rivian R1T, and the Tesla Cybertruck, There was a time when this list might have also included the Havelaar Bison and the Nikola Badger.
None of the vehicles listed above appeal to me. They are too massive. However, I will also admit, that the first vehicle I leaned to drive on, at the tender age of 14, was a Chevrolet Advance Design 3100 pickup, probably from 1952, in the farm fields of Okanagan Mission, near Kelowna. This featured the same split windshield, found on the Nobe 500. The Ford F-series, from the same time period, did not have this characteristic, although certain other F-series features do appear on the Nobe 500. This vehicle is at the top in terms of charm. I am waiting for it to appear dressed as a woodie (sic) wagon before buying one!
Renault Kangoo
In terms of COP26, this vehicle should probably not have been included. It is, but only because of my infatuation with this type of vehicle. People should determine if this is the type and size of vehicle that meets their needs.
When we purchased a Citroën Berlingo in 2002, the other vehicle we considered was a Renault Kangoo. Both were considerably smaller than today’s vehicles. The Citroën was chosen, in part, because at that time there was no local Renault dealership. Currently, we are facing the opposite situation. There is no local Citroën dealership, but there is one selling Renaults. In addition, there are some indications that the upcoming 2022 Kangoo EV (termed Etech, previously ZE in Renault-speak) will offer a range of 285 km. Other specifications released so far include: battery capacity theoretical/ usable = 52/ 47 kWh; motor type = AC synchronous motor; power = 90 kW; torque = 245 Nm; and, importantly, a trailer towing weight braked = 1500 kg.
On 2021-10-28, a day before publication, we visited the local Renault dealer in Steinkjer, and found out that a vehicle should be available to test drive in 2022-05.
Badge Engineering: The Renault Kangoo will be badge engineered into a Mercedes-Benz EQT and a Nissan Townstar.
Microlino
Driving requirements vary, which means that a variety of vehicle types have to be made available. Many people live alone, and have little or no need for a vehicle that can transport more than themselves. For such people, a two person vehicle may be ideal.
In Our Journey, the idea for the Microlino originated when Wim, Oliver and Merlin Ouboter, asked: “How much car does one really need for daily driving?” In Switzerland the answer involved 1.6 passengers and 36.8 km on an average journey, along with parking challenges. This indicated to them that modern cars were over-engineered for urban use, especially if environmental factors, such as global warming, are considered.
Specifications: Overall length / width / height = 2 435/ 1 473 / 1 501 mm; wheelbase = mm; ground clearance = mm; curb weight = 513 kg; seating capacity = 2; battery type = Lithium-Ion (NMC/NCA); battery capacity = 14 kWh; range per charge = 230 km; motor type =; power = 12.5 kW; torque = 118 Nm; speed: max = 90 km/h; acceleration 0 – 50 km/h = 5s; regenerative braking = yes; cargo volume = 230 l; towing weight braked = 0 kg .
Freze Nikrob
Another answer to the Ouboter question could have been the Freze Nikrob, based on the Wuling Mini EV. Rebadged and restyled by Dartz, it is assembled in Lithuania by Nikrob UAB. Dartz wants to sell the Freze Nikrob and its convertible version, the Freze Froggy, in European left-hand-drive markets. It aims for a 10-20% market share of the segment. At a price of €10 000, it is the cheapest in the EU. The focus is on selling to carsharing companies.
Specifications: Overall length / width / height = 2 917/ 1 493 / 1 621 mm; wheelbase = 1 940 mm; ground clearance = mm; curb weight = 665 kg; seating capacity = 4; battery type = lithium polymer; battery capacity = 13.8 kWh ; range per charge = km; motor type = permanent magnet; power = 13 kW; torque = Nm; speed: max = km/h; acceleration 0 – 100 km/h = s; regenerative braking = yes; cargo volume = l; towing weight braked = 0 kg.
Fiat 500 Giardiniera
Giardiniera was a name used for Fiat station wagons. The name, in this context, means gardener. Fiat in 2018, before it became part of Stellantis, announced in general terms that it would be making a five-door, station wagon, hybrid version of a new 500. Fiat now seems to be transitioning to a battery electric brand. A Fiat 500 Battery EV station wagon appeals to me because, we need a vehicle that can be used to carry four (sometimes five) people, groceries, and workshop materials. When, or even if the vehicle will launch, remains speculative. Currently, Fiat is working on an electric replacement for the Panda, probably based on the Centoventi = 120 prototype. That vehicle is expected to launch in 2023.
One of my hopes with the Giardiniera is that the rear door will open more like a conventional door, hinged on the left/ traffic side, rather than a hatch, opening upwards. This was the way it opened on earlier models, made between 1960 and 1977, as shown in the above advertisement.
Sono Sion
Of the vehicles described in this weblog post, the Sono Sion is the one closest in size to our current vehicle, a Mazda 5. Of its many attractive characteristics, it is its Open Service System that will be focused upon here. There are three different levels of service. Level 1 instructional videos and a catalog ensure that almost anyone can replace wear parts, without much prior knowledge. Level 2 involves a publicly viewable and available manual, that allows an extensive network of mechanic partners to offer more extensive repairs and service at an affordable price. Level 3 is for repairs involving high-voltage or body parts, Sono here wants to cooperate with an established European service provider.
I asked a number of people about this vehicle, and sent a copy of an information brochure. One response – from a person who works in the EV industry but for another company that doesn’t compete in the same market, was: “Oh interesting. Exciting for more players. The solar portion is neat! The aesthetics kind of baffle me. Utilitarian, met with early 2000’s interior design with forced elements like the screen and the green house strip. Doesn’t seem cohesive.” Another reply was: “it looks very generic Aka like a Toyota.” The most enthusiastic response came from a third person, “Love it. I’m a solar power human, so this has my full seal of approval.” Four and a half hours later, he added: “Upon further reflection, I would rank this as my top EV.”
Specifications: Overall length / width / height = 4 470/ 1 830/ 1 660mm; wheelbase = 2830 mm; ground clearance = 165 mm; curb weight = kg; seating capacity = ; battery type = liquid cooled lithium ion; battery capacity/ usable = 54/ 47 kWh; range per charge = 260 km; motor type =; power = 120 kW; torque = 270 Nm; speed: max = 140 km/h; acceleration 0 – 100 km/h = 9.0 s; regenerative braking = yes; cargo volume = 650 l; towing weight braked = 750 kg.
Personal Reflections
One of the most important specifications for a vehicle operating in a rural environment in winter is ground clearance. Here, there is no requirement to remove snow before it reaches 100 mm. Thus, ideally, this should be at least 150 mm clearance. However, is not always an easy specification to find. Our Mazda has only 135 mm, and this is noticed. Seating height is also important. In comparing different vehicles, the H-point measures the pivot centre of the torso and thigh, and the height of this in relation to the road, is what is important. This value is a compromise between being able to enter a vehicle elegantly, and being able to see the road.
In terms of range anxiety, we drive a car about 3 times a week, but often less. Once or twice the return distance will be under 40 km, often under 30 km; the other time(s) it will be under 80 km. About five times a year, our driving exceeds these values. Two or three times it will be less than 250 km; two or three times it will exceed that, but be under 400 km. Since our retirement started in 2017, we have only had one trip where the driving distance exceeded these values, when we drove to and from Bergen. It is about 750 km in each direction, but we spent two days driving each way, which also puts it in the 400 km a day range. When our daughter, Shelagh, lived in Umeå, Sweden, we would drive the 600 km distance in about 10 hours (including stops) in a single day.
The Norwegian Electric Car Association has an EV selector app (Elbilvelgeren), that can be used to help limit the number of EVs under consideration.
It allows one to select a range of values for price, range, brand, new or used, trailer capacity. Yes, trailer = tilhenger (in Norwegian) capacity is a must for Norwegians. A utility trailer is used instead of a pickup. These are the standard inputs one can choose from. In addition one can select/ add: launch year, heat pump, four wheel drive, high speed charging, battery size, trunk/ frunk size, electrical power usage, normal charging, number of doors, ground clearance, app for the car, number of seats, dimensions, roof rack capacity, acceleration, kW (power), guarantee, weight, wheel size and body type.
I used the standard one with some modest values, but only two cars came up: VW ID 4 and Skoda Enyaq. The list included both current and announced models to be purchased new. The reason only two models appeared could be because of the trailer capacity selected (1000 kg) and a price (max NOK 360 000). The two cars had a price of just under NOK 350 000. Of those two, I would select the Skoda. I tried the selector again, without the trailer, but with a ground clearance of 150 mm. Again, those two models came up, along with a Hyundai Kona and a Kia Soul.
My hope is that in four years time, 2025-10-29, that there will be a vastly improved EV market, with many more vehicles in the A – C segments, and even smaller vans/ multi-purpose vehicles.
The ICE Age
Frequently, I am accused of being a Citroën 2CV fanboy. In reality, I have always preferred the more elegant Citroën Dyane and the more practical Renault 4. However, I am more enthusiastic about fourgonnettes = small panel vans. French models include: the Citroen AU, AZU, AZ and, especially, the Acadiane, based on the Dyane, and the Renault 4 Fourgonette. English models include: the Morris Minor 1000 van variants, and the Traveller, a station wagon. However, the Hillman Husky, another small wagon, was my favourite. Since moving to Norway, I have come to appreciate the Saab 95, sold as a wagon as well as a panel van. Among larger vehicles, my preference is the International Metro Van, designed by Raymond Loewy (1893 – 1986). In terms of European vehicles the Morris Commercial J-type is next best.
I would like to thank those members of School District 40, New Westminster, who ensured that teacher parking, rather than facilities for pupils, were placed in the courtyard of Vincent Massey Junior Secondary School. This provided me ample opportunity to reflect on the merits of various vehicles, and made me an avid fan of European vehicles, because they seemed so much more appropriately sized than their American equivalents. Thank you.
Tama Electric Car
This weblog post will end with a short portrait of a predecessor to the Nissan EVs, such as the Leaf, developed by Tokyo Electro Automobile Company, which was spun off from the Tachikawa Aircraft company. The Tama Electric Car, assigned vehicle code E4S-47 I. E is for electric, 4S is for 4-seater sedan, 47 is for the year 1947, and I stands for the initial type. The Tama brand name refers to the factory location, a city in the Tokyo metropolis, in the foothills of the Okutama Mountains of southwestern Tokyo. Nissan notes, “When this car first rolled out in 1947, Japan was suffering from an acute shortage of oil, goods and food while the supply of electricity had a surplus since there were almost no home appliances or bulk users of electricity.” This particular vehicle was used as a taxi until 1951. Even as I complain about the Citröen E-Berlingo Multispace, it shows how far electric vehicles have progressed during the 70 years between 1947 and 2017.
Specifications: Overall length / width / height = 3 035/ 1 230/ 1 630mm; Wheelbase = 2 000mm; Curb weight = 1 100kg; Seating capacity = 4; Range per charge = 65km; Motor = 36V DC series-wound, rated at 3.3kW; Batteries = Lead-acid 40V/ 162Ah; Speed: Max = 35 km/h, Most economical = 28km/h.
I have tried to approach Toyota neutrally, as a vehicle brand, over the past fifty years, but it has gradually sunk in my esteem. Today, it is probably the vehicle brand that I regard most negatively. Toyota’s major concern is that a rapid shift from ICE vehicles to EVs could erode its market share and reduce or eliminate profits.
Earlier, in our car purchasing careers, Patricia and I would attempt to evaluate Toyotas. However, they were not designed for our collective anatomies. If Patricia felt comfortable driving a model, it was uncomfortable for me, and vice versa.
Indeed, with the latest incident with their e-Palette pod at the Paralympics in Tokyo, Toyota is now permanently removed from my list of vehicle brands to consider purchasing.
The Last Straw
Toyota suspended use of the e-Palette transportation pods at the Tokyo Paralympic Games village, a day after one of the vehicles collided with and injured a pedestrian on 2021-08-26. After a couple of days the vehicles were taken into use again. The incident happened when a pod was manually controlled by one of its two on-board operators using the vehicle’s joystick. It pulled away from a T-junction and drove through a pedestrian crossing while Aramitsu Kitazono (1991 – ), a visually impaired athlete, was walking across. The vehicle operators were aware that a person was there but thought the person would realize that a bus was coming and stop crossing the street.
This situation involves a vehicle capable of autonomous operation, but being operated in manual mode. Thus, the statement made by Toyota CEO Akio Toyoda (1956 – ) is disingenuous, when he states that the crash shows autonomous vehicles are not yet realistic for normal roads. Indeed, all it shows is that human vehicle operation still results in accidents. Admittedly, there is a need to scrutinize the various levels of autonomous driving systems, including their safety and real-world capabilities. Such an incident is inconsistent with what is expected from a self-driving vehicle. A car cannot expect anything from a human being. It is the vehicle that must exercise caution.
This statement by Toyoda is the proverbial last straw. Toyota has opposed a fast transition to electric vehicles (EVs), something that appears critical to mitigate climate change. In 2021-06, several media sources reported that Chris Reynolds (1963 – ), an American Toyota executive with responsibility for government relations, travelled to Washington DC for closed-door meetings with congressional staff members. Here, he allegedly stated Toyota’s opposition to an aggressive transition to all-electric cars, arguing that internal combustion engine (ICE) – electric hybrids and hydrogen-powered vehicles should be accorded a bigger role.
Toyota has opposed stricter vehicle emission standards and electric vehicle mandates in North America, the European Union and elsewhere, including India, where Toyota’s Indian subsidiary publicly criticised India’s 100% electric vehicle sale target by 2030.
Toyota, and other legacy auto-makers, agreed with the Trump administration in a confrontation with California over the Clean Air Act. Toyota also sued Mexico over fuel-efficiency rules. In Japan, it argued against carbon taxes. Toyota concentrated on the wrong technology. Hydrogen fuel cells offer a costlier and, increasingly, a less developed technology in relation to battery EVs.
The Colours of Hydrogen
Hydrogen may be a colourless gas, but it is available in a variety of colours, based on how it is manufactured. Some methods are environmentally suitable, many are not, and there is no easy way to distinguish what is in any particular vehicle’s tank. This is a major problem for Toyota, when they attempt to promote hydrogen as an environmentally friendly product.
Black or brown hydrogen, uses black (bituminous) or brown (lignite) coal in the hydrogen-making process. Grey hydrogen is the most common form and is generated from natural gas/ methane, through steam reforming. With blue hydrogen, the carbon generated from steam reforming is captured and stored underground through industrial carbon capture and storage (CCS). It is, therefore, sometimes referred to as carbon neutral as the emissions are not dispersed in the atmosphere. However, it is probably more correct to regard it as low carbon because 10-20% of the generated carbon cannot be captured. In addition, storing the carbon can be problematic.
Green hydrogen is produced using clean energy from surplus renewable energy sources, such as solar or wind power, through electrolysis. Yellow hydrogen has two divergent meanings. It can refer to hydrogen electrolysis using solar power, or it can refer to electrolysis using mixed sources, including non-renewables, depending on what is available. Personally, I am attempting to refer to the latter as orange (up to 50% non-renewables) and red, when the non-renewables exceed this value. Pink hydrogen uses electrolysis powered by nuclear energy. Turquoise hydrogen may be more climate friendly than blue hydrogen, but it still relies on a fossil fuel, methane. It is currently an experimental process that uses methane pyrolysis to generates solid carbon. There is no need for CCS, and the carbon can be used in other processes, including tire manufacturing. I dislike the term turquoise being used in this way, because it greenwashes methane. Personally, I would like to refer to this as purple hydrogen.
Hybrids
FerdinandPorsche (1875 – 1951) developed the Lohner-Porsche hybrid vehicle in 1901. It was the first hybrid. Yet, it is Toyota that is known for its hybrids. Hybrid electric vehicles become widely available with the release of the Toyota Prius in 1997. Since then, Toyota has stagnated. Despite the first plug-in hybrid car being built by Andrew Alfonso Frank (ca. 1934 – ), and his students, in 1971, the first mass produced plug-in hybrid passenger car was the Chinese BYD F3DM, launched in 2008. Before this, there were some experimental vehicles, including some Prius models, that were after-market plug-in hybrid conversions, but this was more despite Toyota, than because of Toyota. These added plug-in charging and additional lead-acid batteries, to extend range. It is not Toyota, but Mitsubishi, with its Outlander PHEV that is the world’s all-time best-selling plug-in hybrid. Hybrid vehicles require a duplication of technology, and do not offer any guaranteed reduction in fossil fuel consumption.
Politics
On 2020-12-07, Toyota announced plans to bring two EVs and a hybrid to the European market. On 2021-02-10, they repeated this for the US market. One of the EVs is the bZ4X SUV (and its badge engineered Subaru Solterra AWD). The others are more difficult to guess, but some sources think the plug-in could be a Toyota RAV4/ Subaru Forester. These EVs will not be built by Toyota, but by BYD, the Chinese EV manufacturer. Admittedly, plug-in hybrids can be efficient in some use cases, but it is an exaggeration, if not an outright untruth, to state, as Toyota did, that: “GHG [greenhouse gas contribution] of a currently available BEV model and PHEV model are roughly the same in on-road performance when factoring in pollutants created by electricity production for the average U.S. energy grid used to charge batteries.”
Toyota announced on 2021-09-08, that it is investing ¥ 1.5 trillion = ca. US$ 13.6 billion = ca. € 11.5 billion, in EV batteries as it is trying to catch up after falling behind in electrification. Masahiko Maeda (1969 – ), Toyota’s chief technology office, said that Toyota wants to secure 200 GWh of batteries by 2030. With an average battery pack of 60 kWh, this would be enough to produce more than 3 million EVs per year.
Toyota seems to be trying to game climate change, rather than taking it seriously. They are playing both sides: offering climate scepticism to climate sceptics and climate concern to environmentalists, when it suits them. My personal conclusion is that this approach makes Toyota one of the least ethical auto-makers in the world. It is attempting to undermine agreed upon climate goals, which may in themselves be too little, too late. Consumers with the possibility, should only be considering EVs for their next vehicle purchase. One approach is to retain a current ICE vehicle, until EV prices decline sufficiently to allow a purchase. Regardless, consumers should avoid buying Toyotas, until the company starts talking realistically about environmental concerns including human induced climate change, and shows real environmental progress by eliminating ICE (including hybrid) vehicles from their model program.
If not a Toyota, what?
In the coming months and years, a number of new, lower cost mass market EVs will be emerging, that are more reliable, economical and environmentally friendly than current vehicles. These will not be technological experiments on wheels, but functional mass-market products. The handling of fires in Chevrolet Bolts and Hyundai Konas, shows that manufacturing and selling EVs is not a game, but an endeavour with potentially serious and expensive consequences. While General Motors used delay tactics and let consumers deal with emerging safety issues, Hyundai replaced defective batteries almost immediately, despite the enormous cost. Now, General motors is also having to replace batteries at the same enormous cost, but has lost the respect and confidence of consumers. My expectation is that few consumers will want to prioritize buying a Bolt (or any other Chevrolet EV) in the future.
While there are several theories about innovation, one of the first and most influential was Everett Rogers’ (1931 – 2004) famous Diffusion of Innovations (1961) book, containing a model and curve (see below). Geoffry Moore (1946 – ) in Crossing the Chasm: Marketing and Selling High-Tech Products to Mainstream Customers (1991) regarded the step from early adapters to early majority as a chasm. Crossing it is difficult, yet critical for success. To understand why I am pessimistic about the fate of legacy auto-makers, one has only to read Clayton Christensen (1952 – 2020), The Innovator’s Dilemma (1997). He is not optimistic about the chances of any legacy manufacturer of anything surviving, in a disrupted market.
For the past ten years, EV models have been released that have suited initiators, innovators and early adopters, with an emphasis on sportiness and luxury. These values are wasted on the majority, who want pragmatic solutions to their transportation needs. In Norway, the early majority are already in the marketplace. By 2025, the late majority will have started buying EVs. Laggards will be making EV purchases by 2030, if not 2027.
Today, I read in passing that there are 138 EV models available. I don’t know how accurate this is, but it seems a reasonable approximation. I will make no attempt to influence or micromanage any reader, or to suggest any of these models for anyone. Instead, I will allow readers to see some of my considerations, when I evaluate EVs, and why I need help to make sensible choices. At the most basic level, safety (including positive crash test results) must be in place, and the technology (battery, motor, charging) must be sound.
I am not known for my wise automotive purchases. In part, this is because practicality has to combine with my personal sense of style (some would say, frivolity) to create an attractive vehicle. My first car was a 1962 Hillman Minx convertible, purchased in 1966. It was fun, but unreliable. It lasted six months. Together with Patricia, over our lifetimes, we have owned 2 English, 2 French, 2 German, 2 Japanese and 1 Korean vehicles. In this time I have learned something about vehicles, my own personality, and Patricia’s.
My temperament attracts me to utilitarian French vehicles because of their comfort, ground clearance and load carrying capacity, and despite their notorious lack of reliability. Yet, I manage to see them possessing utilitarian elegance. I have appreciated the Citroën Berlingo since its inception, but I am less enthusiastic about its current and upcoming electric Multispace, its multi-purpose vehicle (MPV) variants. Even the new Renault Kangoo ZE update in the same segment, is not being built as an EV from the ground up. However, I find Renault (and its sub-brand Dacia) along with Fiat, the most interesting European automotive manufacturers, precisely because there is a sense of whimsy in their design. What they lack in quality, they make up in style. Fiat, back in 2018, announced a 500 Giardiniera station wagon. Then in 2019, it presented the Centoventi (120) concept, which they suggested, could become the first Panda EV. Both would be built on an electric only platform. Both hold a design appeal I find lacking in a BMW or Cadillac or a Ford F-150. The main difference between 2019 and now, is that Fiat has become part of Stellantis, headquartered in Amsterdam, but with 30 manufacturing facilities around the world. Most new Fiat products would be built on the Stellantis STLA Small EV platform.
Fortunately, Patricia won’t let me make the most ruinous decisions, and tempers my desire for fashion, form, frivolity and fun. She will undoubtedly tell me that it would be much more sensible to purchase a Hyundai, such as the upcoming Ioniq 3 (compact) or Ioniq 1 (mini) crossover SUV EVs, but that I should wait until 2025, when more mass-market models will be available, at lower prices. Nirvana is less than 40 months away!
Regardless of what happens, it should be noted that I will not be the first in the family to own an EV. My daughter, Shelagh together with her husband, Derek, own a BMW i3.
Note: This post has been modified to include Shelagh and Derek’s change of marital status on 2022-11-22.
Heart Aerospace is a Swedish startup company developing an electric aircraft, the ES-19, a 19-passenger regional airliner, with four propellers. The ES-19 is planned to have a range of 400 kilometers, and to be able to recharge in less than 40 minutes. Heart plans to fly the aircraft in 2024 and have it certified by the end of 2026.
In 2021-03 Heart signed a letter of interest with Finnair which would allow the airline to purchase up to 20 ES-19 aircraft. In 2021-07 United Airlines and their sometime partner, Mesa Airlines, announced their intention to purchase 100 ES-19 aircraft, each.
Heart Aerospace is based in Göteborg, Sweden. It also has offices in Stockholm, Sweden and Palo Alto, California. Originally, it was part of the Electric Air Travel in Sweden (ELISE) project. It has funding from Sweden’s Vinnova innovation agency. For the ES-19 project, Heart Aerospace have backing fromEQT Ventures, Breakthrough Energy Ventures (a venture fond started by Bill Gates in 2015 “to accelerate the development of sustainable energy and green technologies”), Mesa Airlines, United Airlines, and the European Innovation Council Green Deal Accelerator Programme. The governments of Sweden, Denmark, Norway, Finland, Iceland and Greenland have contributed about $1.4 million in funding.
While some might put the ES-19 in the same category as a de Havilland Canada DHC-6 Twin Otter, currently marketed as the Viking Air DHC-6 Twin Otter, perhaps because they carry the same number of passengers, and have a high-wing design, there are a number of differences. In addition to all-electric propulsion, the ES-19 has a modular design, with aluminium as the airframe’s base material. The fuselage has a non-cylindrical profile, to optimise internal space utilisation, with 1+1 seating. The cabin is pressurised, and the landing gear retractable. It is designed to operate from a 800 m long runway.
The Nordic Network for Electric Aviation, founded in 2019, includes national airport authorities (Avinor, Finavia and Sweavia) and five airlines (Air Greenland, Braathens Regional Airlines, Finnair, Icelandair and SAS). For example, in 2020-12 Iceland stated it plans to have carbon-free domestic flights by the end of 2029. Iceland’s compact size and short distances between population centres, makes it suitable for using first-generation electric aircraft. enthusiastic about the application of electric technology, especially in light of the island’s abundant geothermal and hydro-power green-energy resources. Swedish North Volt is also involved in battery development for the aircraft.
Distances between airports are longer in Norway and Sweden, and the number of passengers to be moved is higher. However, Norway plans to have all its domestic flights all-electric by 2040. It is considering subsidies and/ or tax incentives for individual routes.
United Airlines has stated that the aircraft can be used on about 100 different routes in USA, but none are mentioned by name.
For further information see: https://heartaerospace.com/
In 1913, Henry Ford and Thomas Edison had collaborated on an electric vehicle. This was not a successful venture. Fifty-four years later, in 1967, Ford of Great Britain, produced their first modern electric vehicle, a Ford Comuta concept/ prototype, developed at Ford’s Dunton Technical Centre, east of London.
The Comuta was 2 032 mm long, and weighed about 545 kg. Along with a fiberglass body, it featured a steel backbone chassis, with an independent suspension provided by leading arms at the front and trailing arms at the rear. Drum brakes were also provided.
It could seat two adults in the front and two children in the rear. It’s top speed of 60 km/h and a range of 60 km if driven at 35 km/h. The rear wheel drive vehicle was powered by dual DC electric motors that put out 3.7 kW. These were originally designed as aircraft auxiliary units. Power came from four mid-mounted 12 V 85 Ah lead-acid batteries, producing a total of about 4 kWh. Ductwork piped air through the central backbone to provid motor cooling and heating for the passenger compartment.
Somewhere between two and six Comutas were built (sources conflict). It was unveiled at the 1967 Geneva Motor Show. One can be found in the collection of the Science Museum in London. The fate of the other(s) is unknown.
V2G = Vehicle-to-Grid, involves one basic question. Who can a person trust? Technically, this is a weblog post about the transfer of electrical power to and from an electric vehicle (EV). This topic is forcing electrical vehicle stakeholders to think in new ways. It is a bit too early to call it a paradigm change, but that is the direction in which it is heading. One of the main challenges is to find out who is going to control (and profit from) this transfer. There are at least four potential answers: consumers, electricity producers/ grid owners, regulators and EV manufacturers. One’s approach to this control, may have much to say about the attractiveness of EV brands.
First, this blogger would like to criticize the Wikipedia article on the topic that begins by putting V2G into a purely economic perspective, essentially a system in which plug-in electric vehicles (PEV), “communicate with the power grid to sell demand response services by either returning electricity to the grid or by throttling their charging rate.” There can be other reasons for connecting a vehicle to the grid other than economic considerations. Security from power outages is one of these. Speed can be another. The type of ownership can be yet one more consideration, especially if one is a member of a co-operative. If economic considerations are to be made, then it is important that all costs associated with it are taken into consideration. Battery degradation is one of these, especially when the cost of a battery in a battery electric vehicle (BEV) is about one-third of the vehicle cost, in 2021. Then there are regulations, which impact stakeholders in different ways, some technical, some economic, some social and even some that are cultural.
Second, for a century consumers have been persuaded that their role in the electricity supply system is to use electricity, and to pay for it. With more discussion of a smart grid, this narrow role is being expanded. At a minimum, consumers living between 60 degrees S and 60 degrees N, are being encouraged to install solar panels. Increasingly, electrical power does not just need to be produced. It needs to be stored. Electrical producers and grid managers are also having difficulty responding to this change. This has necessitated grid regulators to enter the arena, and to make decisions that are typically unpopular with one group or the other.
Third, there are numerous variations on the theme, involving electrical power flow. Here are some of them.
V1G = Unidirectional power flow, from one source
V1G, from several sources
V1G, with fragmented actor objectives
V2G = Bidirectional power flow
V2H = Vehicle-to-home
V2B = Vehicle-to-building
V2L = Vehicle-to-load
V2X = Vehicle-to-everything
Apart from this paragraph, V2X will not be discussed further in the post. It is less about the transfer of (electrical) power, than communication between a vehicle and any entity that may affect, or may be affected by, that vehicle. It may incorporate other more specific types of communication, including: V2I (vehicle-to-infrastructure), V2N (vehicle-to-network), V2V (vehicle-to-vehicle), V2P (vehicle-to-pedestrian), V2D (vehicle-to-device) and V2G (vehicle-to-grid). The main motivations for V2X are road safety, traffic efficiency and energy savings.
Fourth, there are at least three approaches to V2G from automakers. These will be examined in terms of three different EV manufacturers: Tesla, Volkswagen and Hyundai.
Avoidance
Tesla seems to want to avoid V2G altogether. Jeffrey B Straubel (1975 – ), Tesla’s chief technical officer, stated his opposition to V2G technology, because battery wear outweighs its economic benefits. This might be a satisfactory solution in areas that do not experience power outages, but even in California power companies are cutting off power, to prevent forest fires, during extreme weather situations. The deadliest and most destructive forest fire in California history, the Camp Fire in Northern California in 2019, is thought to have been caused by downed power lines. According to at least one source, during the Texas blackout of 2021, a Tesla owner who rigged up such a system to provide basic needs for his family, had his Tesla Warranty voided.
Tesla often undertakes unilateral actions, including software updates, that sometimes impact consumers negatively. On such change occurred in 2019, when Tesla updated system software to “protect the battery and improve battery longevity,” and it resulted in a range loss for only “a small percentage of owners.” In Norway, a lawsuit was filed with the (consumer) Conciliation Board, 2020-12. Tesla did not respond to this. On 2021-04-29, the board found Tesla guilty of throttling charging speed and battery capacity through this 2019 software update. It ordered Tesla to pay NOK 136 000 = ca US$ 16 000 for each vehicle registered in the case. There are about 10 000 such vehicles in Norway, and this judgement would also apply to many of them. The decision could also be even more significant, with similar legal cases in other countries.
Control
On 2021-04-05 Volkswagen Group announced that starting 2022-01-01, all vehicles built on its MEB platform will have V2G capability. This is probably a good enough reason for anyone considering a new Audi, Seat-Cupra, Skoda or Volkswagen vehicle should wait until then before buying such a vehicle.
At Volkswagen’s Power Day (2021-03-15) Elke Temme, Head of Charging & Energy at Volkswagen Group Components, stated that 6 500 GWh a year of renewable energy is not used due to lack of energy storage. She suggested that grid operators could store that electricity in car batteries if they have the technical and regulatory ability to do so. This is sufficient energy to power 2.7 million BEVs. She did not discuss how much Volkswagen could earn from such an arrangement.
Consumers may once again be concerned about how their interests are going to be taken into consideration, by Volkswagen Group. As individual consumers produce more power through solar panels, and other devices, it can be more economically beneficial for them to power their own houses – and vehicle batteries – first, before sending power into the grid. From the description of the Volkswagen system provided so-far, Volkswagen seems to want to take on the role of being an electrical system power broker, but one that is only capable of a binary relationship, in which either power is supplied to the grid, or taken from it. Similarly, there was no mention of compensating BEV owners for any battery degradation.
Flexibility
On 2021-02-22 Hyundai announced that its Ioniq 5 would offer V2L capabilities. V2L enables it to provide up to 3.6 kW of power to external devices. This is managed through 1) an Integrated Charging Control Unit (ICCU); 2) a Vehicle Charging Management System (VCMS); and 3) an on-board charger (OBC) . Users can access up to 70% of the vehicle’s battery capacity. This includes the ability to charge other vehicles. The Hyundai approach seems to offer a much more flexible solution, than those offered by Tesla or Volkswagen.
Hyundai’s new Electric-Global Modular Platform (E-GMP) will be underpinning new Genesis, Hyundai and Kia EVs. Between 2021 and 2025, they will be releasing 23 different models that use this platform. Its main components will be 1.) a battery pack under the cabin, 2.) an all-in-one motor, transmission, and inverter designed/ developed/ manufactured by Hyundai. This bundling will raise the maximum speed of the motor by up to 70 percent compared to existing motors, despite its small size, allowing it to produce up to 450 kW of power. Equipped with a 50 kWh vehicle battery pack, an EV will be able to provide 35 kWh of electrical energy that can be fed into a house during an outage. While the size of batteries has not been disclosed, they should offer a range of about 500 km, and allow 80% charging in 18 minutes, with an 800 V architecture and 350 kW charging speeds. A five-minute charge can add about 100 km of range.
Consumer Responses
What should consumers do? A first step is for every consumer to show a healthy scepticism to all proposals from other electricity stakeholders, including electricity producers and EV manufacturers. Assume they will not be acting in consumer interests, but in their own interests, until proven otherwise. If something seems too good to be true, it probably is. A second step is to understand how a smart grid operates, and the role of the various stakeholders in it, including consumers. Part of this could be a household level microgrid (MG). A third step is to understand, and potentially advocate for a broad right-to-repair legislation, to ensure that the consumer is fully in charge of the vehicle.
When an EV is connected to a MG, rather than to the larger grid directly, the consumer has an opportunity of using both energy production and energy storage sources optimally. The consumer can decide if power should flow from an EV to the main grid, a V2G strategy, or to the load, a V2L strategy, at any given time. Consumers should be encouraged to reduce loads in peak periods, or shift them to off-peak periods. EV scheduling and demand response programs help MGs to reduce costs/ increase profits. Sahbasadat Rajamand has used simulations to show costs can be reduced by 14.67% using optimized EV scheduling.
One energy related stakeholder that has not been heard from so far, in the presentation of this debate is the consumer’s insurance company. They are, in fact, not particularly keen about shifting electrical consumption to off-peak hours, particularly if those hours involve the night when consumers are sleeping. In Norway, they are actively discouraging consumers from using equipment such as washing machines, driers and dish washers during the night because of the fire risk. While potential cost savings look significant as a percentage, they are totally insignificant if lives are put in danger.
For consumers maximizing energy usage to off-peak hours, can be a tedious chore. Norwegian consumers have decided that the economic benefits are not worth the cost. Major electricity producers are advocating it, so that they can profit from selling power outside of their traditional market. The advantage of V2G comes from emergency preparation. As implied in a weblog post about the ACE EV, auxiliary electrical power offers an almost normal lifestyle during an electrical power outage. It can power refrigerators and freezers, hot water tanks, induction stove tops, conventional and microwave ovens, computers and their screens, lighting or broadband interconnections.
As readers can see from the above, this writer is more impressed with the V2L solution offerd by Hyundai Group than that offered by either Tesla or Volkswagen Group. It remains to be seen how other EV manufacturers, such as BMW, Ford, General Motors, Honda, Mercedes Benz, Renault-Nissan-Mitsubishi (including Avtovaz and Dacia brands), Stellantis (Chrysler, Citroën, DS, Fiat, Opel, Peugeot, Vauxhall), Toyota and numerous Chinese brands will develop, with respect to V2G.
The Australian Clean Energy Electric Vehicle (ACE EV) group is a startup founded in 2017 by Australian engineer Gregory McGarvie (ca. 1952 – ) and Chinese entrepreneur Will Qiang, in Maryborough, Queensland, Australia. Its goal was to manufacture electric vehicles in Australia, especially small, city vans aimed for small businesses.
In August 2019, ACE EV unveiled their range of three electric vehicles: the Cargo van, the Yewt pickup, and the Urban 3-door hatchback. Sales of vehicles on the Australian market are expected to start in 2021, with prices of about AU$ 40 000 = NOK 250 000 = US$ 25 000. Castle Placement has been engaged to find AU$ 230 million in capital. Their prospectus provides further insights into ACE EV.
In addition to the Australian domestic market, developing countries throughout the world represent another target market for ACE EV. Competitive product pricing requires some changes to product development. The focus is on providing the underserved with access to electric vehicles and battery technologies. This will be done by offering kit based or do it yourself (DIY) modular packages for easy assembly and maintenance anywhere in the world; onboard Alternating Current Bidirectional/Vehicle to Grid (V2G) capabilities; and, Carbon Fibre Reinforced Plastic (CFRP) components that are 3D printable and recyclable.
Australia’s legacy auto-makers have closed down, with the last mass-market vehicles being produced in Australia in 2017. Now, only insignificant quantities of niche products are made.
The assembly of an electric vehicle kit could facilitate the training of EV service personnel, as well as more general education at secondary schools, and in other forums. This comment is addressed in particular to readers at Melvindale secondary school in Detroit, Verdal prison school, and the Inderøy Radio Control Club.
It may be less advantageous for private individuals to construct their own vehicles. If any problems arise, one wonders if Ace EV would accept responsibility, or attempt to deflect responsibility onto the builder/ owner. I asked my daughter if she would want me to spend some of her potential inheritance buying an EV kit? She tactfully replied that “a car is best purchased, not diy’ed.” Two minutes later, she added, “To put it bluntly, it sounds like a recipe for disaster.”
V2G capability could quickly become a must-have feature of an EV. In areas where short duration power outages are a relatively common occurrence, V2G could eliminate the need for a smelly, noxious wood stove. At cliff cottage, we removed the wood stove from our living room, with the intention of replacing it with a more modern variant. This would cost about NOK 50 000.
Unfortunately, a wood stove is an inferior substitute for electrical power. It does not power refrigerators or freezers, hot water tanks, induction stove tops, conventional and microwave ovens, computers and their screens, lighting or broadband interconnections. Its only function is space heating. One proposal is to invest in some form of a battery pack that could feed electricity to the house during an outage. V2G is one such answer.
I am eagerly awaiting a YouTube video, made by an Australian outback station owner, describing an Ace EV’s capabilities after a year of driving. Will it withstand driver abuse? is a critical question.
Wikipedia comments on the Moth class, “Originally a small, fast home-built sailing boat designed to plane, since 2000 it has become an expensive and largely commercially-produced boat designed to hydroplane on foils. The pre-hydrofoil design Moths are still sailed and raced, but are far slower than their foiled counterparts.”
There have been many iterations of the Moss dinghy, with the exact number dependent on how they are counted. First, it began life in Australia in 1928 when Len Morris built a cat rigged = single sail, wooden scow = a flat-bottomed boat with a horizontal rather than a more common vertical bow. It was hard chined = with a sharp change in angle in the cross section of a hull, 3.4 m long, with a single 7.4 m2 mainsail. A second iteration emerged in North Carolina in 1929, with a 6.7 m2 sail, on a somewhat shorter mast. In 1933, The Rudder, an American boating magazine, published an article about the American Moths. A third iteration came about in 1932, when a British Moth class was started. This was a one-design, which meant that there could be very little variation between the boats. One designs are used in competitions so that winners can be distinguished on the basis of sailing ability, rather than in boat characteristics.
The fourth iteration was initiated with the Restricted Moth of the 1960s and 1970s. With few design restrictions, individuals were allowed to modify their boats. This allowed the class to develop and adjust to new technology and materials. An International Moth arose in Australia and New Zealand.
The Europa Moth, which became the Olympic Europe dinghy, can be regarded as a fifth iteration. This was followed by a sixth iteration, in the form of a New Zealand Mark 2 Scow Moth, in the 1970s. Finally, a seventh iteration emerged with the International Moth, a fast sailing hydrofoil dinghy with few design restrictions.
Most people who choose a Moth do so because it is a development class. In much the same way that there are two types of motorsport enthusiasts, those who want to keep their vehicles stock, and those who want to modify it. The Moth appeals to those who want to modify their boat. There are plenty of other one-design classes, some designed for racing, others more suitable for cruising, for sailors without genes that demand they experiment, and take risks.
The Moth of the 1930s was a heavy, narrow scow that weighed about 50 kg. Today’s foiling moth has a hull weight of under 10 kg. During some periods wider skows without wings have been popular. Now, hulls are narrow and wedge-shaped, but with hiking wings stretching to the maximum permitted beam. Sail plans have evolved from cotton sails on wooden spars, through the fully battened Dacron sails on aluminum spars, to today’s sleeved film sails on carbon spars.
While foiling moths are mainly used in protected areas, they can also be used offshore. On 2017-01-21 Andy Budgen sailed Mach 2 a foiling International Moth Nano Project to complete the 60 nautical mile (nm) = ca. 111 km (1 nm = 1852 m) Mount Gay Round Barbados Race at a record pace of 4 hours, 23 minutes, 18 seconds, to established the Absolute Foiling Monohull record.
In 2021, the much larger 75 feet = 23.86 m foiling AC75 monohulls were competing. First, the Prada Cup series was held to determine who would challenge New Zealand in the America’s Cup. It ended with Luna Rossa Prada Pirelli/ Circolo della Vela Sicilia’s Luna Rossa defeating American Magic/ New York Yacht Club’s Patriot and Ineos Team UK/ Royal Yacht Squadron’s Britannia. Speeds were regularly over 50 knots = 92.6 km/h = 25.7 m/s = 57.5 mph. In the subsequent America’s Cup, Emirates Team New Zealand/ Royal New Zealand Yacht Squadron’s Te Rehutai defeated Luna Rossa, to retain the cup. Here is a 10 minute summary of the last race. This video will also show the massive size and speed of these vessels.
Readers may, at this point, wonder why this weblog post is being written, especially when this writer has no interest in sailing such a vessel. He would only be interested in helping to make one for others to use and enjoy. The typical person who could be interested in this, is an inmate at a Norwegian prison, perhaps this unidentified person who drove at 288 km/h = 179 mph, through a tunnel, and bragged about it on social media. Working with cutting edge technology, and sailing at the limits this technology allows, should be a perfect combination of activities for such a risk-oriented person. The advantage of sailing is that it doesn’t put other people in danger, although I would want to have a high-powered rigid inflatable boat (RIB) available during test runs, to rescue this person when (rather than if) he capsizes.
Unfortunately, I don’t expect the prison system to welcome this suggestion. They seem to think that having inmates make pallets will in some way create law-abiding citizens. It won’t. A previous weblog has discussed Flow as a means of motivating inmates.
In the twenty-first century, the ancient Greek word, aptera = wingless, has been reused, this time to refer to a brand of extremely aerodynamic vehicles. Perhaps, it can best be regarded as reassurance that this vehicle will remain flightless, and not ascend into the skies. An equally appropriate name for the vehicle would be Phoenix, for the Aptera brand and vehicle was born in 2006, died in 2011, but was resurrected in 2019.
The original Aptera Motors, Inc., was founded by Steve Fambro (1968 – ) in 2006 and was originally named Accelerated Composites. Fambro was educated as an electrical engineer at the University of Utah, where he studied electo-magnets and antennas. Immediately before starting Aptera, he worked as a senior electrical engineer at Illumina, designing robots that make DNA, and vision systems to inspect that DNA. On LinkedIn, he writes, “Embracing efficiency as an ethos for a car company means we endeavour to do more with less. More range, more performance, more safety, more fun- with fewer batteries, less mining, less energy, less carbon. Doing more with less.”
Fambro initially worked as chief executive officer (CEO) at Aptera. He hired Chris Anthony to be the chief operating officer (COO) shortly after the founding. Thirty million dollars was raised in three rounds of funding, and Aptera grew from 3 to 50 employees. Aptera launched a prototype, the Typ-1, in 2007.
The design of the Aptera Typ-1 was futuristic, but due in large part to Jason C. Hill, president/ owner/ designer at Eleven, a transportation, automotive and mobility design consultancy, started 2003-11. Hill describes himself and his company on LinkedIn as “Specializing in design and product development as well as strategic design, advanced design, and design DNA creation. Currently working with a top New Energy Vehicle Company. Worked on AV solutions regarding the integration of sensor technology for the leading company of LiDAR tech. Recently worked with a MAAS start-up defining the design DNA and UX/UI for their unique urban mobility solution.”
The Aptera 2 Series, was a rebadged Typ-1, to be made available in two variants, a battery electric 2e, and a plug-in hybrid 2h. These could accelerate from 0 to 100 km/h in about 6.3 seconds. Their top speed was 140 km/h. About 5 000 pre-orders for the vehicles were made by California residents.
In 2008, Fambro relinquished his CEO position to Paul Wilbur, and became chief technical officer (CTO) for the company. When Wilbur joined Aptera he had 20 years of experience with Ford and Chrysler, and over 10 years experience as CEO of American Specialty Cars Incorporated, a tier 1 supplier. My thought on reading this, is that he was too integrated into the conservative automotive industry to function as a CEO of a venture capital financed startup.
Because of assorted production challenges that made it difficult to receive government financing for a three wheeled vehicle classified as a motorcycle, instead of a four wheeled vehicle classified as a car, the design was changed to that of a four wheel vehicle. This added immensely to the cost, and the original company was liquidated in 2011. Various reasons are cited for this, but one is the enormous amount of capital needed to actually produce a car.
After several years working with vertical farming, Steve Fambro and Chris Anthony, once again found an opportunity to relaunch the Aptera in 2019. This time it was Chris Anthony who was given the role of CEO. He had gained experience working as founder and chairperson at Flux Power, an energy storage technology company, for ten years from 2009-10 to 2019-12. Another major differences was that this new Aptera relied on crowd funding from enthusiasts, rather than venture capital from impatient capitalists. During the course of the intervening nine years, electric cars had matured. Batteries were larger and cheaper, motors were more powerful, and there was a better understanding of how everything worked.
Dimensions of the Aptera 2e and 3 respectively
Wheelbase
2 819 / 2 743 mm
Length
4 394 /4 369 mm
Width
2 311 / 2 235 mm
Height
1 346 / 1 448 mm
Kerb weight
680 / 800 kg
Dimensions of the Aptera 2e & Aptera 3.
The Aptera 2e used an A123 Systems for the 20 kWh lithium iron phosphate (LiFePO4) battery pack, and Remy International for the 82 kW HVH250 electric motor. This was mated to a BorgWarner 31-03 eGearDrive transmission. A SAE J1772 compatible charging system at either 110 or 220 V was to be provided. The range was about 190 km.
The hybrid version also had a small, water-cooled electronic fuel injection (EFI) gasoline engine with closed loop oxygen feedback and catalytic converter that was connected to a 12 kW generator/starter. It is similar in approach to the range extender found on the BMW i3. With a 20 litre fuel tank and fully charged battery, the 2h could offer a range of 970 – 1130 km.
Aptera 3 evokes deja vu. It repeats the basic Jason C. Hill design, but modernized for the 2020s. Like many other smaller manufacturers of electric vehicles, Aptera has engaged the services of Munro & Associates, a company established in 1988. Munro & Associates, Inc., focuses attention on profit improvement through design innovation; not financial trickery or outsourcing. He claims that they use their 3 000 m2 facility to benchmark and redesign products using purpose built software, and an internal search engine to remove 20% to 60% of the cost while improving the product’s function and quality. Sandy Munro has his origins, like this weblog writer, in Windsor, Ontario, where he started working as a toolmaker at the Valiant Machine Tool Company.
The resin composite skin contains microfluidic channels filled with a coolant to transfer heat from the batteries, motors and solar panels to the underbelly and sides of the vehicle.
Technically, the Aptera 3 will come with either two or three wheel hub motors for front-wheel drive or all-wheel drive. Each motor provides 50 kW, and is provided by Elaphe Ltd, in Ljubljana, Slovenia. Multiple solar panel, motor and battery configurations are planned, with ranges from 400 to 1 600 km provided by 25, 40, 60 or 100 kW·h lithium-ion battery packs. Embedded solar cells will contribute up to an additional 65 km per day from sunlight alone under ideal conditions. With average daily commute distances estimated to be about less than 50 km per day, this allows Aptera to claim that they are producing a never charge vehicle. Prices vary from US$ 25 900 to over US$ 47 000. The all-wheel-drive version will accelerate from 0 to 100 km/h in 3.5 s. The two-wheel-drive versions have a 0 to 100 km/h time of 5.5 s.
A number of details for the Aptera 3 are missing. This includes the charging technology to be used. Several enhancements/ options are offered: SafetyPilot adds Level 2 autonomy capability, including facial tracking, lane keeping, adaptive cruise control, and emergency braking; Enhanced audio provides three more channels of audio including an added lightweight transmission-line subwoofer; Off-road kit increases ground clearance and provides tougher wheel covers; Camping kit provides an integrated tent and rear awning; and, Pet kit adds a pet divider, a way to secure a pet, a rear ladder and other assessories for an animal.
From other sources, it appears that Aptera will use batch processing (rather than an assembly line) to produce its products. A batch could consist of between 100 to 200 units that have highly similar characteristics. Batch production would reduce capital investment.
Two new front-wheel drive (FWD) limited editions will be available. The Paradigm Edition is described as “The Most Efficient Vehicle on the Road” with a 640 km range, 100 kW drive system, with solar panels. The Paradigm + is “The Most Efficient Long Range Vehicle on the Road” with a full 1 600 km range, 100 kW drive system, and solar panels.
Notes: 1. The noun Aptera, has a long history. It was the name of an ancient city in Crete, as well as the name of another ancient city in Turkey. Carl Linnaeus (1707 – 1778) classified Aptera as the seventh and last order of Insecta. It included many diverse creatures without wings, including crustaceans (crabs/ lobsters/ shrimp/ woodlice/ barnacles, etc.), arachnidans (spiders), myriapods (terrestrial creatures having anywhere from about 10 to 750 legs), and more. In 1795 Pierre André Latreille (1762 – 1833) divided it into seven orders: Suctoria, Thysanura, Parasita, Acephala, Entomostraca, Crustacea, and Myriapoda.
2. Wikipedia claims that the 2e was (going to be) assembled in Canada. Canada is a big place, and I haven’t been able to find out where, specifically, this was going to happen. If anyone knows, please advise and the text will be modified appropriately, with an acknowledgement.
The Arcimoto Deliverator, is a last-mile battery electric delivery vehicle, made in Eugene, Oregon, USA. (Photo: Arcimoto)
Arcimoto describes itself as a manufacturer of ultra-efficient electric vehicles. These are (relatively) low cost and low environmental impact vehicles.
The Fun Utility Vehicle (FUV) is a three-wheeled, two-passenger tandem = seated one behind the other, vehicle. This vehicle uses a platform that forms the basis for other models. Specifications for the FUV are shown in the table below. All values are converted and approximate. American units are available from the Wikipedia article on Arcimoto, or the company website.
Acceleration
0-100 km/h in 7.5 s
Top Speed
120 km/h
Turning Circle
8 840 mm
Power
57 kW
Range
160 km city ca 100 km @ 90 km/h ca 50 @ 110 km/h
Overall Length
2 870 mm
Overall Width
1 549 mm
Max Height
1 651 mm
Ground Clearance
140 mm (unladen)
Wheelbase
2 032 mm
Shipping Weight
590 kg
GVWR
816 kg
Specifications for the Arcimoto Fun Utility Vehicle, converted to conventional metric units.
Munro & Associates, is providing engineering advice to Arcimoto. Some of this work is related to product engineering, such as reducing vehicle weight to 500 kg. Others aspects relate to expanding production capacity and profitability. Arcimoto has two strategic directions: It can focus on expanding production to 50 000 units/year, or it can concentrate on higher profit margin products (Deliverator/ Rapid Responder) at its current 3 – 5 000 unit/year rate, or some combination of both. On 2021-01-06, Agreed to purchase a larger, 17 000 square meter manufacturing facility, a few blocks away from its previous/ current location in Eugene.
An aside: Sandy Munro (? – ) is a Canadian automotive engineer, who started his working life as a tool and die maker. He worked for Ford, starting in 1977, but left in 1988 to start his own consultancy. His work incorporates design for assembly (DFA)/ design for manufacturability (DFM) principles. His focus is on lean design, which is also the name of his website. His tear-down reports critically examine quality issues of specific vehicle models. They are most often used by assorted Asian start-ups. As the wise, old man of the automotive industry, he begins his YouTube videos with, “Hey, Boys and Girls …” Munro is also assisting Aptera with a relaunch of their vehicle, abandoned ca. 2009.
The FUV platform uses pouch cells from Farasis Energy, a Chinese battery manufacturer, providing a total of 19.2 kWh. While the battery is capable of accepting level 2 charging, Arcimoto plans on making fleet vehicles capable of handle higher charging rates.
Arcimoto is not developing in-house autonomous driving capabilities, but provide a foundation for third party hardware and software that will integrate into the vehicle platform. For example, steering is drive by wire allowing software to control wheel direction without additional hardware. Advanced driver-assistance system (ADAS) features will be gradually added up to level 5 (Eyes off) autonomous driving.
The Rapid Responder™ is an emergency response vehicle that retains the two passenger configuration, but has equipment found on emergency vehicles. It is inexpensive (US$ 25 000), easily manoeuvrable through traffic, and capable of reaching places inaccessible to large trucks.
The Deliverator® replaces the rear seat with a large cargo area accessible by a door on the starboard side (right side facing forward) for last-mile delivery. Because of its small footprint, it can park in places unavailable to larger vehicles.
In development is the Cameo™. The passenger seat and storage compartment is replaced with a rear-facing seat, for a camera person to film various activities. It is aimed at the “film and influencer industry”. Also in development is a flat-bed pickup variant, and the Roadster, “Anticipated to be released in the first half of 2021, the Roadster is designed to be the ultimate on-road fun machine. Built on our patented three-wheel all-electric platform, … [it] features an incredibly low and forward center of gravity, twin-motor front wheel drive, instant torque, and a fully-connected seating stance.”
On 2021-01-26, it was anounced that Arcimoto will be buying Tilting Motor Works’ assets for around US$10 million, along with Arcimoto shares. Arcimoto want to integrate these into future products. TRiO, which is the most popular three-wheel conversion kit for touring motorcycles, provides a comfortable and stable ride, but with the riding characteristics of a motorcycle. This means that the rider/ driver can drive/ pilot their vehicle as if it were a two-wheeled motorcycle, yet eliminate the need to put their feet down while at a stop, or riding in slow traffic.
Upcoming electric vehicle posts
With so much time spent researching and writing about computing, there has been less time available to research and write about electric vehicles. Currently, five drafts of weblog posts are either scheduled or pending. These are:
Aptera will be the subject of the next weblog post on electric vehicles. It is a three-wheeled streamlined (enclosed) vehicle. Originally scheduled to be launched ca. 2010, this vehicle was a focus during my teaching career. The project was abandoned, but has since been revised.
Paxster has much in common with the Arcimoto Deliverator, but is a four-wheeled vehicle. It used for urban mail distribution by the Norwegian postal service, Posten.
Frikar is a pod bike, made in Sandnes, Norway.
Eav from Electric Assisted Vehicles Limited, of Bicester, England, is an eCargo bike with electric power assistance for last-mile transport solutions.
e-Cub is about Shanghai Custom’s electric conversion of the world’s most popular vehicle, the Honda (Super) Cub, with over 100 million units having been produced since 1958.
Mobilize is the name of Renault’s new mobility division. This division will offer car-sharing, energy and data-related services to help make transportation more sustainable. Their first prototype, the EZ-1, was presented 2021-01-15. A production model could be a replacement for the Renault Twizzy.
Additional electric vehicles will be discussed in Downsizing the Garage, scheduled for 2021-10-29, the fourth anniversary of Stuffing a 10-car garage, which appeared 2017-10-29.