Downsizing the Garage

The Nobe 500, one of six European vehicles featured in this weblog post. Photo: Nobe

Four years ago today, on 2017-10-29, a weblog post titled Stuffing a 10-car garage was published. It presented a number of electric vehicles (EVs) that had awakened my curiosity over the years, along with one internal combustion engine (ICE) vehicle, the Citroën Berlingo. The one advantage of a virtual garage is that it is very easy to acquire and then dispose of vehicles.

The 2021 United Nations Climate Change Conference, the 26th held (COP26), is scheduled to begin 2021-10-31 in Glasgow, Scotland, two days after publication of this weblog post. The conference will end 2021-11-12. Hopefully something will be accomplished to prevent a climatic disaster.

EVs are not only increasing in number, but improving, technically and in terms of design. Unfortunately, most of this development is happening in vehicle segments that people should be avoiding . This weblog post presents six EVs made by six companies for six different segments from six different European countries. During the year this post has been in development, all of the models originally selected have departed the list, and been replaced by others. The number of continents represented has decreased from four to one, with an encouragement for people to buy locally produced products. I don’t believe I could do the same using North American products. Even, with this focus on smallish, affordable European EVs, it has been difficult.

Not many specifications are available for the selected vehicles at the time of publication. Those missing will be provided in subsequent updates, when I remember. The worst case situation in this post, is that of Fiat and its Giardiniera. Despite the initial hype and promises, at the moment it is looking more like vapourware. It is included to remind people that vapourware is a major problem in the automotive industry. It allows manufacturers to pretend that they are doing something, when in all likelihood nothing is happening at all.

In terms of the A segment, I had hoped that the Zetta CM1 had been developed further. I had wanted to put an improved Zetta in the A class, and even contacted the manufacturer, Russian Engineering and Manufacturing Company (REMC) in Toliatti about it. I received no reply to my email.

Segments D and above/ larger are ignored in this post out of concern for the environment.

CompanyModelSegmentCountry
Nobe500PickupEstonia
RenaultKangooMPVFrance
MicrolinoMicrolinoMicro (L7e)Switzerland
FrezeNikrobALatvia
Fiat500 GiardinieraBItaly
SonoSionCSweden
Six companies producing six vehicle models for six segments in six European countries.

Nobe 500

A Nobe 500 Pickup. Photo: Nobe

Pickups are typically regarded as American, so there would probably not have been many objections if this slot had been filled by any number of American vehicles including, in alphabetical order by brand, the Ford F-150 Lightning, the GMC Hummer, the Lordstown Endurance, the Rivian R1T, and the Tesla Cybertruck, There was a time when this list might have also included the Havelaar Bison and the Nikola Badger.

None of the vehicles listed above appeal to me. They are too massive. However, I will also admit, that the first vehicle I leaned to drive on, at the tender age of 14, was a Chevrolet Advance Design 3100 pickup, probably from 1952, in the farm fields of Okanagan Mission, near Kelowna. This featured the same split windshield, found on the Nobe 500. The Ford F-series, from the same time period, did not have this characteristic, although certain other F-series features do appear on the Nobe 500. This vehicle is at the top in terms of charm. I am waiting for it to appear dressed as a woodie (sic) wagon before buying one!

Renault Kangoo

The Renault Kangoo E-tech Photo: Renault

In terms of COP26, this vehicle should probably not have been included. It is, but only because of my infatuation with this type of vehicle. People should determine if this is the type and size of vehicle that meets their needs.

When we purchased a Citroën Berlingo in 2002, the other vehicle we considered was a Renault Kangoo. Both were considerably smaller than today’s vehicles. The Citroën was chosen, in part, because at that time there was no local Renault dealership. Currently, we are facing the opposite situation. There is no local Citroën dealership, but there is one selling Renaults. In addition, there are some indications that the upcoming 2022 Kangoo EV (termed Etech, previously ZE in Renault-speak) will offer a range of 285 km. Other specifications released so far include: battery capacity theoretical/ usable = 52/ 47 kWh; motor type = AC synchronous motor; power = 90 kW; torque = 245 Nm; and, importantly, a trailer towing weight braked = 1500 kg.

On 2021-10-28, a day before publication, we visited the local Renault dealer in Steinkjer, and found out that a vehicle should be available to test drive in 2022-05.

Badge Engineering: The Renault Kangoo will be badge engineered into a Mercedes-Benz EQT and a Nissan Townstar.

Microlino

A Microlino with space for two. Photo:Microlino.

Driving requirements vary, which means that a variety of vehicle types have to be made available. Many people live alone, and have little or no need for a vehicle that can transport more than themselves. For such people, a two person vehicle may be ideal.

In Our Journey, the idea for the Microlino originated when Wim, Oliver and Merlin Ouboter, asked: “How much car does one really need for daily driving?” In Switzerland the answer involved 1.6 passengers and 36.8 km on an average journey, along with parking challenges. This indicated to them that modern cars were over-engineered for urban use, especially if environmental factors, such as global warming, are considered.

Specifications: Overall length / width / height = 2 435/ 1 473 / 1 501 mm; wheelbase = mm; ground clearance = mm; curb weight = 513 kg; seating capacity = 2; battery type = Lithium-Ion (NMC/NCA); battery capacity = 14 kWh; range per charge = 230 km; motor type =; power = 12.5 kW; torque = 118 Nm; speed: max = 90 km/h; acceleration 0 – 50 km/h = 5s; regenerative braking = yes; cargo volume = 230 l; towing weight braked = 0 kg .

Freze Nikrob

The Freze Nikrob Photo: Freze

Another answer to the Ouboter question could have been the Freze Nikrob, based on the Wuling Mini EV. Rebadged and restyled by Dartz, it is assembled in Lithuania by Nikrob UAB. Dartz wants to sell the Freze Nikrob and its convertible version, the Freze Froggy, in European left-hand-drive markets. It aims for a 10-20% market share of the segment. At a price of €10 000, it is the cheapest in the EU. The focus is on selling to carsharing companies.

Specifications: Overall length / width / height = 2 917/ 1 493 / 1 621 mm; wheelbase = 1 940 mm; ground clearance = mm; curb weight = 665 kg; seating capacity = 4; battery type = lithium polymer; battery capacity = 13.8 kWh ; range per charge = km; motor type = permanent magnet; power = 13 kW; torque = Nm; speed: max = km/h; acceleration 0 – 100 km/h = s; regenerative braking = yes; cargo volume = l; towing weight braked = 0 kg.

Fiat 500 Giardiniera

An older Fiat 500 Giardiniera shown in this Dutch advertisement.

Giardiniera was a name used for Fiat station wagons. The name, in this context, means gardener. Fiat in 2018, before it became part of Stellantis, announced in general terms that it would be making a five-door, station wagon, hybrid version of a new 500. Fiat now seems to be transitioning to a battery electric brand. A Fiat 500 Battery EV station wagon appeals to me because, we need a vehicle that can be used to carry four (sometimes five) people, groceries, and workshop materials. When, or even if the vehicle will launch, remains speculative. Currently, Fiat is working on an electric replacement for the Panda, probably based on the Centoventi = 120 prototype. That vehicle is expected to launch in 2023.

One of my hopes with the Giardiniera is that the rear door will open more like a conventional door, hinged on the left/ traffic side, rather than a hatch, opening upwards. This was the way it opened on earlier models, made between 1960 and 1977, as shown in the above advertisement.

Sono Sion

The Sono Sion, equipped with solar panels. Photo: Sono

Of the vehicles described in this weblog post, the Sono Sion is the one closest in size to our current vehicle, a Mazda 5. Of its many attractive characteristics, it is its Open Service System that will be focused upon here. There are three different levels of service. Level 1 instructional videos and a catalog ensure that almost anyone can replace wear parts, without much prior knowledge. Level 2 involves a publicly viewable and available manual, that allows an extensive network of mechanic partners to offer more extensive repairs and service at an affordable price. Level 3 is for repairs involving high-voltage or body parts, Sono here wants to cooperate with an established European service provider.

I asked a number of people about this vehicle, and sent a copy of an information brochure. One response – from a person who works in the EV industry but for another company that doesn’t compete in the same market, was: “Oh interesting. Exciting for more players. The solar portion is neat! The aesthetics kind of baffle me. Utilitarian, met with early 2000’s interior design with forced elements like the screen and the green house strip. Doesn’t seem cohesive.” Another reply was: “it looks very generic Aka like a Toyota.” The most enthusiastic response came from a third person, “Love it. I’m a solar power human, so this has my full seal of approval.” Four and a half hours later, he added: “Upon further reflection, I would rank this as my top EV.”

Specifications: Overall length / width / height = 4 470/ 1 830/ 1 660mm; wheelbase = 2830 mm; ground clearance = 165 mm; curb weight = kg; seating capacity = ; battery type = liquid cooled lithium ion; battery capacity/ usable = 54/ 47 kWh; range per charge = 260 km; motor type =; power = 120 kW; torque = 270 Nm; speed: max = 140 km/h; acceleration 0 – 100 km/h = 9.0 s; regenerative braking = yes; cargo volume = 650 l; towing weight braked = 750 kg.

Personal Reflections

One of the most important specifications for a vehicle operating in a rural environment in winter is ground clearance. Here, there is no requirement to remove snow before it reaches 100 mm. Thus, ideally, this should be at least 150 mm clearance. However, is not always an easy specification to find. Our Mazda has only 135 mm, and this is noticed. Seating height is also important. In comparing different vehicles, the H-point measures the pivot centre of the torso and thigh, and the height of this in relation to the road, is what is important. This value is a compromise between being able to enter a vehicle elegantly, and being able to see the road.

In terms of range anxiety, we drive a car about 3 times a week, but often less. Once or twice the return distance will be under 40 km, often under 30 km; the other time(s) it will be under 80 km. About five times a year, our driving exceeds these values. Two or three times it will be less than 250 km; two or three times it will exceed that, but be under 400 km. Since our retirement started in 2017, we have only had one trip where the driving distance exceeded these values, when we drove to and from Bergen. It is about 750 km in each direction, but we spent two days driving each way, which also puts it in the 400 km a day range. When our daughter, Shelagh, lived in Umeå, Sweden, we would drive the 600 km distance in about 10 hours (including stops) in a single day.

The Norwegian Electric Car Association has an EV selector app (Elbilvelgeren), that can be used to help limit the number of EVs under consideration.

A screenshot of the Norwegian Electric Car Association has an EV selector app (Elbilvelgeren).

It allows one to select a range of values for price, range, brand, new or used, trailer capacity. Yes, trailer = tilhenger (in Norwegian) capacity is a must for Norwegians. A utility trailer is used instead of a pickup. These are the standard inputs one can choose from. In addition one can select/ add: launch year, heat pump, four wheel drive, high speed charging, battery size, trunk/ frunk size, electrical power usage, normal charging, number of doors, ground clearance, app for the car, number of seats, dimensions, roof rack capacity, acceleration, kW (power), guarantee, weight, wheel size and body type.

I used the standard one with some modest values, but only two cars came up: VW ID 4 and Skoda Enyaq. The list included both current and announced models to be purchased new. The reason only two models appeared could be because of the trailer capacity selected (1000 kg) and a price (max NOK 360 000). The two cars had a price of just under NOK 350 000. Of those two, I would select the Skoda. I tried the selector again, without the trailer, but with a ground clearance of 150 mm. Again, those two models came up, along with a Hyundai Kona and a Kia Soul.

My hope is that in four years time, 2025-10-29, that there will be a vastly improved EV market, with many more vehicles in the A – C segments, and even smaller vans/ multi-purpose vehicles.

The ICE Age

Frequently, I am accused of being a Citroën 2CV fanboy. In reality, I have always preferred the more elegant Citroën Dyane and the more practical Renault 4. However, I am more enthusiastic about fourgonnettes = small panel vans. French models include: the Citroen AU, AZU, AZ and, especially, the Acadiane, based on the Dyane, and the Renault 4 Fourgonette. English models include: the Morris Minor 1000 van variants, and the Traveller, a station wagon. However, the Hillman Husky, another small wagon, was my favourite. Since moving to Norway, I have come to appreciate the Saab 95, sold as a wagon as well as a panel van. Among larger vehicles, my preference is the International Metro Van, designed by Raymond Loewy (1893 – 1986). In terms of European vehicles the Morris Commercial J-type is next best.

I would like to thank those members of School District 40, New Westminster, who ensured that teacher parking, rather than facilities for pupils, were placed in the courtyard of Vincent Massey Junior Secondary School. This provided me ample opportunity to reflect on the merits of various vehicles, and made me an avid fan of European vehicles, because they seemed so much more appropriately sized than their American equivalents. Thank you.

Tama Electric Car

This weblog post will end with a short portrait of a predecessor to the Nissan EVs, such as the Leaf, developed by Tokyo Electro Automobile Company, which was spun off from the Tachikawa Aircraft company. The Tama Electric Car, assigned vehicle code E4S-47 I. E is for electric, 4S is for 4-seater sedan, 47 is for the year 1947, and I stands for the initial type. The Tama brand name refers to the factory location, a city in the Tokyo metropolis, in the foothills of the Okutama Mountains of southwestern Tokyo. Nissan notes, “When this car first rolled out in 1947, Japan was suffering from an acute shortage of oil, goods and food while the supply of electricity had a surplus since there were almost no home appliances or bulk users of electricity.” This particular vehicle was used as a taxi until 1951. Even as I complain about the Citröen E-Berlingo Multispace, it shows how far electric vehicles have progressed during the 70 years between 1947 and 2017.

Tama 1947 Electric Car Photo: Nissan Heritage Collection

Specifications: Overall length / width / height = 3 035/ 1 230/ 1 630mm; Wheelbase = 2 000mm; Curb weight = 1 100kg; Seating capacity = 4; Range per charge = 65km; Motor = 36V DC series-wound, rated at 3.3kW; Batteries = Lead-acid 40V/ 162Ah; Speed: Max = 35 km/h, Most economical = 28km/h.

Clarice Falcão: A tidbit

Clarice Falcão (1989 – )

One Comment: Clarice Falcão (1989-10-23 – ) is a Brazilian singer-songwriter, and actress from Recife.

One Film: In 2007, Clarice won a contest with this short called Laços (Ties), directed by Célio Porto, the boy in the film, and Adriana Falcão (1960 – ), her mother, and presented at the Sundance Film Festival. Her song, Australia, is an integral part of the story.

One Quotation, from Australia:

I’m stuck here in the darkness
Blinded by all the light
Standing outside my body with my body still in sight

One Explanation for this entry: Wikipedia explains that Recife has a dark history, as the first slave port in the Americas. It was founded in 1537, during the early Portuguese colonization of Brazil. Located at the confluence of the Beberibe and Capibaribe rivers before they flow into the South Atlantic Ocean, the city is a major port on the Atlantic. Its name is an allusion to the stone reefs that are present by the city’s shores. The many rivers, small islands and over 50 bridges found in Recife city centre characterise its geography and led to the city being called the Brazilian Venice. It has a relatively high ranking in terms of Brazilian human development index (HDI), ranking highest in Northeast Brazil.

However, Racife also contained the former capital, Mauritsstad, of the 17th century colony of New Holland established by the Dutch West India Company. That fact makes it interesting for me, as the city is part of my biological heritage, and the birthplace of Maria Post in 1649, one of my ancestors. Her parents were from Haarlem, in the Netherlands. After Recife, the family moved to New Amsterdam, residing on Staten Island and then Bergen, New Jersey. Maria herself moved to Schenectady, in upstate New York, where my Norwegian ancestors (the Bratts) had moved, after emigrating from Fredrikstad to Amsterdam and onwards to New Amsterdam.

Trees

2021-10-16 at 10:00 a sycamore maple, Acer pseudoplatanus, at Cliff Cottage, is shedding its leaves in preparation for winter. Photo: Brock

Trees have a positive impact on mental health. People exposed to trees have been shown to experience a third less psychological stress in contrast to those without such access. Open grassy areas do not have such an effect, although they also have their value. Even looking at leafless deciduous trees during winter months is positive. Trees and shrubs has been found to increase test scores and graduation rates of students, while decreasing criminal behaviour. In workplaces, increased access to nature (not just trees) has been found to improve employee morale, to increase efficiency, decrease stress, and increase job satisfaction.

My own psychological response to looking at trees is that I begin to think of family and friends, alive and departed, especially those living in Essex county, Ontario – or with origins there, including those living across the American border in Michigan, in British Columbia as well as Norway. At times I considered naming particular trees after specific people, but have resisted this so far. However, looking at trees provides me with a form of comfort.

This week I have been reading David B. Williams, Homewaters: A Human and Natural History of Puget Sound (2021). Apart from the depth of human habitation, with some evidence pointing to 13 960 years, the other intriguing aspect of the environment where I grew up, is its transformation about seven thousand years ago, from a hotter and dryer savannah-like environment with oaks as the major tree, to a cooler and moister environment, “with conifers towering over a nearly impenetrable understory.” (p. 29)

Not all of the trees are conifers. One of my favourite trees is Arbutus menziesii. In Canada, it is referred to as an Arbutus. In Washington state and Oregon, it is called a Madrona. According to Sunset Western Garden Book, Madrone is more common south of the Siskiyou Mountains of southern Oregon/ northern California while Madrona is more common north of this divide. Much of its attraction is related to its distinctiveness. It has the leaves of a deciduous plant, yet is evergreen. Its reddish orange bark peels away in thin sheets, leaving a smooth green trunk. It is common along the protected eastern coast of Vancouver Island, and the Gulf (Canadian)/ San Juan (American) Islands that lie between it and the mainland, and more generally throughout the Salish Sea.

I grew up in New Westminster, British Columbia, not far from Puget Sound. Ash Street is one of few streets named after trees/ plants in the city. The others are Arbutus, Cedar, Cherry, Chestnut, Oak, Pine and Spruce Streets, and Blackberry Drive. Wood Street and, potentially, Holly Avenue are possibly/ probably named after people.

Ash trees are in the Fraxinus genus, and the olive (Oleaceae) family. They are often used as street trees to provide shade. Various sources state that they were once the most-planted urban tree in the United States. Ashes are dioecious, meaning that individual trees are either male or female, but not both. Of the thirteen species of Ash in the world, nine are found in North America: Black Ash (Fraxinus nigra) is native to eastern Canada and the north-eastern United States; Green Ash (F. pennsylvanica) – eastern and northern North America; White Ash (F. americana) – eastern North America; Pumpkin Ash (F. profunda) – eastern North America; Blue Ash (F. quadrangulata) – midwestern United States; California Ash (F. dipetala) – California, Arizona, Utah, Nevada and Baja California; Carolina Ash (F. caroliana) – Cuba, subtropical southern United States; Gregg’s Ash (F. greggii) – Arizona, New Mexico and Texas; and, Velvet Ash (F. velutina) – southwestern North America.

None of the species on the list inhabit the area around the Salish Sea/ Cascadia/ Pacific Northwest. Thus, on 2021-06-30 I wrote to New Westminster’s mayor, Jonathan X. Coté, expressing my concern about naming practices in New Westminster, especially that from the names used, one would think the city was located in England. Noting that there are no members of the Fraxinus genus native to the Lower Mainland of British Columbia, I hoped that “tree” streets would be renamed for native/ endemic species. I received no reply.

At Cliff Cottage, we have one European Ash tree, Fraxinus excelsior. This started life as a seedling in the garden of a colleague in Leksvik. It failed to grow vigorously in its original location, and has been moved twenty meters to a more suitable location. Throughout eastern and northern Europe, the fungus Hymenoscyphus fraxineus, has been causing Ash dieback since the mid-1990s. Some believe the European Ash is in danger of extinction.

I have long-term relationships with several different trees. Perhaps the longest is with one particular European Beech (Fagus sylvatica) tree in New Westminster, that I have admired (coveted?) for over 60 years. I have often wondered about its origins. Once again, the species is not native to British Columbia, so at some point it has been planted. When, by whom and why have frequently occupied my mind.

A European Beach (Fagus sylvatica) growing at Cliff Cottage. The photo was taken 2020-10-31. Photo: Trish.

Walks in beech forests in Denmark, and other parts of Europe, has resulted in the belated planting of one at Cliff Cottage. Hopefully, I will live long enough to protect it, so that future owners of this property will continue to let it survive/ thrive for its natural lifetime, 200 – 300 years, when an average beech tree should have reached 25 – 40 meters in height, with a trunk diameter of up to 1.5 meters. In Trøndelag, it is an introduced but naturalized species, at its most northerly limit.

Northwest of my childhood home, but still on Ash Street, there was a Araucaria araucana, a Monkey (Puzzle/ Tail) tree of Chilean origins. It too provoked my curiosity, and I have often considered planting one at Cliff Cottage. They exist in Norway, but the most northerly one is on the island of Smøla, near Molde.

Perhaps the most successful planted tree on our property is a sycamore maple, Acer pseudoplatanus. This is a daughter plant to one found at Utøy elementary school, that our children attended. Naturvernforbundet, the environmental organization usually translated as Friends of the Earth, in English, complains loudly about this species. Yet, it is Inderøy municipality – owner of Utøy school – that has allowed this species to thrive on the school grounds. The school has also distributed seeds to pupils. While the Norway maple, Acer platanoides, is endemic to southern Scandinavia, it is equally foreign as the sycamore in Trøndelag, where both species have been introduced and naturalized. Neither are endemic. I find it hypocritical of biologists to condemn the one species without condemning the other.

Other trees growing at Cliff Cottage are: Norway spruce (Picea abies), Scots/ Scotch/ Baltic pine (Pinus sylvestris), Common juniper (Juniperus communis), eastern/ northern white cedar (Thuja occidentalis), silver birch (Betula pendula), European rowan (Sorbus aucuparia), white poplar (Populus alba), bird cherry, (Prunus padus), Japanese maple (Acer palmatum) – red leaved cultivar, goat willow (Salix caprea), small leaved lime/ linden (Tilia cordata) and red elderberry (Sambucus racemosa). We also have rhododendrons but are uncertain as to the species. At one time we also had two coffee trees (Coffea arabica) growing indoors, but they grew too large and were given away.

The main purpose of this weblog post is to encourage people to enjoy the trees they have access to.

Note: Most of this post was written 2020-08-12, but updated 2021-10-15 and 16.

Ada Lovelace Day

https://upload.wikimedia.org/wikipedia/commons/thumb/9/95/Ada_Lovelace_color.svg/653px-Ada_Lovelace_color.svg.png
A portrait of Ada Lovelace, based on an original watercolour portrait by Alfred Edward Chalon (1780 – 1860), that has been modified into a woodcut-style graphic by Colin Adams, for the Ada Initiative. It has been converted into SVG format by Fred the Oyster then colourized by Kaldari. The original artwork is in the public domain, and this final Creative Commons derivative has been available in this form since 2011-10-15.

Today is Tuesday, 2021-10-12. Because it is the second Tuesday in October, it is Ada Lovelace Day.

The micro-story behind this posting is that Ada Lovelace (1815 – 1852) collaborated with Charles Babbage (1791 – 1871) on his Analytical Engine. In 1843, she was the first person to publish a computer program. It generated Bernoulli numbers. Lovelace is also considered the first person to foresee the creative potential of the Analytical Engine, especially its ability to create music and art. The date selected for Ada Lovelace day is arbitrary. This day is one that could be one used by people with programming skills to serve humankind in various ways. In many places, it is also a school day, although not this year, and many other years where I live, as a week long autumn school break is being held.

For those wanting more information about Ada Lovelace, one place to begin is her Wikipedia article. In additional to a biography, it also provides other sources of information about her, including books, plays and videos.

At one level this day attempts to raise the profile of women in Science, Technology, Engineering and Mathematics (STEM). Some want to use STEAM, by adding Art. In my time as a teacher of technology, Ada Lovelace day was an opportunity to encourage female students to investigate STEAM, where they might be able to bypass some of those headstrong members of another, weaker gender. This day does not supersede or in any way compete with the International Women’s Day on 03-08,

In terms of the more technical aspects of computing there are many other days that can be celebrated, World computer day is 02-15. It was first celebrated in 2021, with a focus on 75 year old Eniac, described by some as the first programmable, electronic, general-purpose digital computer. At a more practical level, the second Monday in February, is designated the (American) National Clean Out Your Computer Day. Many people have issues regarding the storage of data on their computers, including the taking of regular backups. However, there is also a World Backup Day on 03-31, which could be a better day to focus on such issues.

For those who need more computing days: (Apple) Macintosh Computer Day = 01-24; World Password Day = 05-05; System Administrator Appreciation Day = 07-30; Computer Security Day = 11-30; Computer Literacy Day = 12-02, and National Download Day = 12-28.

Dates in the weblog follow International Standard ISO 8601 formats. Generally, of the form YYYY-MM-DD, however in this specific post there are many in the MM-DD format. ISO 8601 is the only format that the Government of Canada and Standards Council of Canada officially recommend for all-numeric dates. It is my experience that about half the Canadian population uses the American MM-DD-YYYY format, while the other half uses DD-MM-YYYY, necessitating the need for ISO 8601. However, usage differs with context. See: https://en.wikipedia.org/wiki/Date_format_by_country

Tech Ed

A Raspberry Pi 3 and filter boad (shield) from TAPR. From an article by Scotty Cowling WA2DFI in the January 2017 issue of QRP Quarterly.

Technological Education: Before & Beyond Code Club. A second weblog post with a focus on amateur radio.

We live in a world of celebrities, where people with influence attempt to promote activities they know little about. My favourite celebrity, for illustrative purposes, is Paris Hilton (1981 – ), who is world famous, for being famous. Much further down the list is Clare Sutcliffe who, with Linda Sandvik, developed Code Club in 2012. They, and Code Club, are world famous for trying to teach children, aged 9 to 13, to programme or, at least, write code. They know a little about children, and a little about programming. I am not certain how much they know about teaching children.

As noted before in previous weblog posts, in Scandinavian teacher education, Lev Vygotsky (1896 – 1934) is probably the most important theorist. His Zone of Proximal Development (ZPD), is the range of tasks that a child is in the process of learning. While some level of proficiency (the ZPD lower limit) is possible with the child working independently, higher skill levels can be reached with teacher assistance. The teacher’s role is to construct a learning scaffold, a support that allows the child to develop confidence and capability. Over time, the scaffolding is gradually removed, until – once again – the child works independently.

In North America, a related concept is that of a teachable moment, that was popularized by Robert Havighurst (1900 – 1991) in Human Development and Education (1952). “A developmental task is a task which is learned at a specific point and which makes achievement of succeeding tasks possible. When the timing is right, the ability to learn a particular task will be possible. This is referred to as a ‘teachable moment.’ It is important to keep in mind that unless the time is right, learning will not occur. Hence, it is important to repeat important points whenever possible so that when a student’s teachable moment occurs, s/he can benefit from the knowledge.”

Swiss developmental psychologist, Jean Piaget (1896 – 1980) argued that children develop abstract reasoning skills in their last developmental stage, the formal operational stage. He suggested this occurs between the ages of 11 and 16. Many educators make an arbitrary choice, which is the beginning of junior secondary school. Before this age there should be a focus on the concrete, and the physical.

The key to teaching technology is to find a suitable start point for abstract thinking. Programming, like many related tasks, requires abstract thinking. Many in that 9 to 13 age group are just not mature enough, and will find the tasks impossible, potentially putting them off programming forever.

With Code Club there is no focus on either scaffolding or teachable moments or an ability to think abstractly. It appears to be unsystematic in its approach using Scratch, HTML & CSS, Python and a variety of other coding languages. In certain jurisdictions, the initiative also provide free BBC Micro:bits to children above the age of 9, this provides a potentially disingenuous economic incentive.

Code Club states that its purpose is on children having fun, while coding games. My experience is that children are less motivated by fun, than by an opportunity to be of service, and to be respected for their mature behaviour.

Games have other negative aspects. There is a potential for lifelong gaming addictions. On 2021-08-30, China introduced new restrictions to limit the time under-18s can spend online gaming. They may only play on public holidays, Fridays, Saturdays, and Sundays from 20:00 to 21:00. All online games have to link with a state anti-addiction system. In the west there seem to be no limitations imposed despite the fact that many students are unable to remain awake in their classrooms, because they have spent their entire nights gaming. Games are addictive. Code Club originally wanted to limit its activities to one hour a week. However, not all children (or their parents) are in agreement with this.

Relying on games is also problematic, because they are divorced from reality. They can blur moral boundaries, allowing players to choose between being good or evil or somewhere inbetween. I am in agreement with Chinese authorities that games should not give players this moral choice.

Another challenge relates to the evaluation of game quality. Any discussion can be treated as a subjective opinion. There is seldom any tests of correctness that can be applied. This contrasts with physical computing where the programming is incorporated inside an electromechanical device that has to serve a purpose, and there are metrics that can be used to determine if the goals incorporated into the device have been achieved.

On a more positive note, game-related tools, such as simulations, can be useful in teaching subjects as diverse as social economics, and ecology.

In terms of preparation for learning, there are three key things parents can do. They can ensure that children eat healthily, sleep sufficiently and are physically fit. In elementary school (typically grades 1 to 7) one approach is to focus on outdoor activities that encourage endurance (stamina), strength, mental well being, an understanding of the natural world, and an appreciation of other human beings.

As an example, these concepts will be applied to amateur radio.

Teaching typically relies on a curriculum that shows how various activities mesh together in a comprehensive whole, to provide insights and knowledge to students. This allows any teacher to know the specific educational goals to which s/he is working, so that s/he can choose the most appropriate pathway. In terms of amateur radio, this means knowing which components, ICs, MPUs and programming languages are going to be used, and why.

In amateur radio, the most popular FM communication frequencies are restricted to line of sight. This means that local groups often build repeater stations on high elevation points at remote locations that can facilitate communication over longer distances. These repeater stations are typically not on the grid. They need power from some local source, a battery rechanged with a generator powered by an engine using tanks of propane gas, a miniature windmill or a solar panel. Regardless, these will need to be inspected and serviced at regular (typically annual, intervals). Thus, one activity is to encourage younger children to accompany adults, walking the trails that lead to the repeater stations to check them out, and service them if required. At the same time they might learn something about FM communication, batteries and other equipment through osmosis. Older children might even be able to carry some of the equipment needed, and thus feel even more useful. At some point the child will be in a position to actually undertake the complete servicing.

The fabrication of antennas is another area where children might be able to participate. Under adult supervision, they can be given a diagram of the antenna to be built, with instructions detailing the lengths of wire to be used, and how they are to be attached to black boxes, more generally called baluns and traps in radio circles, which are needed to make antennas function optimally. Here the skills needed will be physical, an ability to measure, mark, cut, fasten and assemble. All of these activities require the use of simple, non-electric hand tools. Fabrication provides an opportunity for children to learn work safely, to be orderly, systematic and accurate, and to have respect for other people and tools. It can also teach the value of cleanliness, in that workshops have to be cleaned regularly.

This list is far from complete, and I would ask that radio amateurs and others who have ideas for activities suitable for children to contact me with their suggestions.

In terms of more abstract activities, I would certainly not begin with programming, but with electronics. Electronics has become a simpler subject since the introduction and wide scale adoption of transistors, integrated circuits (ICs) and microprocessor units (MPUs). That said, it is often easier to program a solution, rather than to develop a circuit. However, one must understand the advantages and limitations of both, starting with electronics.

One understandable electronics textbook is Electronics: A Self-Teaching Guide (1979) by Harry Kybett. This was followed up with a second edition in 1986. The third edition appeared in 2008, that had its title changed to All New Electronics Self-Teaching Guide. It also added Earl Boysen as co-author. The latest edition is Complete Electronics: Self-Teaching Guide with Projects (2012). Here, the order of the authors is reversed, Earl Boysen and Harry Kybett. I used the third edition as my main source of electronic information, for the last years of my teaching. However, when in doubt I do check information with more recent, typically online, sources.

Another book that attempts to impart basic electronic insights is Make: Electronics (2009) by Charles Platt (1945 – ). It is the hands-on experimentation that makes this book valuable. This was followed up with Make: More Electronics: 36 Illustrated Experiments That Explain Logic Chips, Amplifiers, Sensors, and More (2013).

Microprocessors have existed since the Intel 4004 was released in 1971. There have been any number of microprocessors used to teach aspects of computing. There are many other families of microcontrollers that may be used to solve real-world challenges, including the construction of radio circuits. These include BeagleBone, ESP, and Teensy. However, since 2005, three families of microprocessors have attracted attention for educational purposes. These are: Arduino, Raspberry Pi and Micro::bit, in release date order.

Of these, Arduino is the oldest of these, and shows its age and limitations, although it does have some excellent attributes. Despite its limitations, the Arduino can be an appropriate place to start learning, especially if one has an Arduino based starter kit of electronic components. In 2011, Jeremy Blum made a number of video tutorials, introducing people to Arduino. I used these extensively in my teaching. He developed projects where components are fitted onto a breadboard, and then joined to ports on the Arduino including ground (negative) and 5 V power (positive). The Arduino is connected to a power supply connected to household current.

Blum wrote a book Exploring Arduino (2013), second edition (2019). Radio amateurs should note that chapter 15 in the second edition discusses wireless radio frequency (RF) communication, providing a useful introduction to the electromagnetic spectrum, and the use of RF to control assorted devices, such as doorbells, lamps, and relays. The next two chapters discuss Bluetooth communication and WiFi communication, respectively.

One important family of Arduino devices are shields. These are printed circuit boards with various components already installed on them, capable of performing a specific function. They fit onto an Arduino board without any wiring or soldering.

Micro::bit is a political project, organized by the British Broadcasting Corporation. Because they wanted to ingratiate themselves with a large number of corporate sponsors, there is abundant choice. The Norwegian Department of Education has decided to deploy Micro::bit in Norwegian classrooms, not because of its educational merits, but because a Norwegian company had its parts incorporated into it. I am avoiding it because of some major pedagogical weaknesses.

This leaves the Raspberry Pi (RPi) as the most suitable technology for teaching about microprocessors. One of the reasons it has been adopted by teachers and hobbyists, is its General Purpose Input Output Pins (GPIO). These 26-40 pins provide a physical interface between the RPi MCU and the world, because it allows for the connection of a range of sensors/ activators/ other components typically placed on breadboards. When developed into a circuit, the components can interact with software installed on the Pi. These include a number of amateur radio applications.

RPi HATs (Hardware Attached on Top) are specially designed boards that perform specific tasks, that plug directly onto the GPIO pins. These provide the same type of function as the shields do on Arduinos. James Stevens in his MoJCQ’s Hamblog provides ten amateur radio uses involving RPis. More recently, Kedric Hart has written Coolest Raspberry Pi Amateur Radio Projects in 2021. Both of these articles have one weakness. They are reporting on projects developed by other people. Some of the projects are good, others are less good, but left unimproved. Thus, none of the projects can be incorporated into a teaching project without being reworked.

Books related to Raspberry Pis and amateur radio include: Dwight Stanfield’s Hamshack Raspberry Pi for Amateur Radio Activities (2018) and Jeremy Stephens, Hamshack Raspberry Pi: A Beginner’s Guide to The Raspberry Pi for Amateur Radio Activities (2017).

Much of the learning necessary for amateur radio activities happens when the student works on experiments. An experiment should be an investigation that allows for an exploration of a topic in some detail. Microprocessors bring a new dimension to the construction of an electronic devices. They will be made out of electronic components, but also contain code run inside the microprocessor.

Code here should be regarded as a software component. It is inserted and run, producing results that can be documented. Code can also be modified, in much the same way that a component of a different value can be substituted for another, resulting in operational changes that can be measured.

After a student has become proficient in building and modifying devices, including the software, that s/he should be encouraged to programme. There are any number of languages that can be chosen, but often these are related to the microprocessors being used. For example, Arduinos use a variety of Wiring that looks almost like C. Raspberry Pis are often programmed in Python.

Rob Thubron, in an Techspot article dated 2021-09-27, titled Some students don’t understand the concept of computer files and folders, that begins, “To readers of this site, the idea that some students on courses ranging from engineering to physics don’t know what files and folders are might seem strange, but it’s true. According to a new report, the fault lies with popular modern operating systems and devices that include all-encompassing search functions or hide file structures from plain view.”

He ends, quoting physicist/ astronomer/ associate professor Peter Plavchan, addressing fellow educators who look on aghast at students unable to comprehend filing systems, “This is not gonna go away. You’re not gonna go back to the way things were. You have to accept it. The sooner that you accept that things change, the better.”

If terms of radio technology there are going to be generational divides. Boomers (while they still exist) and GenXers will educate Millennials and GenZs in accord with their understanding of the world. Hopefully, the teachers will take to heart the advice of Lev Vygotski, and concentrate on building the scaffolding so helpful for pupils to learn. How the Millennials and GenZs respond is up to them!

Note 1: Code Club was merged into the Raspberry Pi Foundation on 2015-11-03, as a wholly owned subsidiary. On 2018-03-16, Clare Sutcliffe, then executive director at Raspberry Pi, announced she was leaving both Code Club and Raspberry Pi.

Amateur Radio

This scene from Nancy Drew, Detective (1938) depicts Nancy Drew, played by Bonita Granville (1923 – 1988), charming boyfriend Ted Nickerson, played by Frankie Thomas (1921 – 2006), into helping her. Amateur radio equipment of the time is prominently displayed. The 8 in the call sign W8YZR indicates that the fictional location, River Heights, must be located in Michigan, Ohio or West Virginia. There appears to be a National NC-101X receiver, a variable frequency oscillator with a large National velvet vernier dial, and a large open rack mount transmitter. The most curious aspect of the photograph is the pigeon sitting on the open window, and one wonders if this too represents another communications vector of the time period.

This post is being published because I have passed my amateur radio licence exam, and been issued the Norwegian call sign: LB2XJ. I am not the first person in my immediate family to have such a licence. My son, Alasdair, aka LB6HI, earned his in 2019. Both of us also have previously taken VHF = very high frequency, maritime radio certificates (now called SRC = short range certificate). The primary reason for taking this earlier certificate was to be able to seek help in emergency situations while boating, although it allows other forms of communication between boat operators. The reasons for taking this amateur radio licence are more complex, and the subject of this weblog post.

I would like to thank four people for their assistance in gaining this certificate. These are Per-Dagfinn Green (LA1TNA), Peter Ebsworth (LA7ZMA/ LB0K), Jan Stewart Rambech (LA7VV) and Robert Eliassen (LA6GHA). The first two were instructors for the online Amateur Radio course given by the Bergen Group of the Norwegian Radio Relay League, which is the national organization for amateur radio enthusiasts in Norway. The course consisted of 17 course evenings from 2021-02-03 to 2021-05-11 with 22 participants completing the course, of which 19 have so far passed their exam. Jan organized an exam for me in Trondheim on 2021-06-19, which I managed to fail. Robert organized a second exam, held at Cliff Cottage, on 2021-09-25, which I managed to pass. I would also like to thank Lars Gjøsund (LA9EMA) for his encouragement to get my ticket, as North Americans would say.

My first encounter with amateur radio was through the wolf cubs/ boy scouts at Sixth Avenue United Church, New Westminster, where one of the leaders who lived nearby on McMartin Street, had radio equipment that we were invited to see (and hear) in use. If anyone knows the name of this person or other early New Westminster radio amateurs, I would appreciate the information. Yes, I have attempted to contact the New Westminster Amateur Radio Club (NWARC) to find out if they know, as well as to find out who else I know there. However, they don’t seem to accept unsolicited emails. How they will be able to function with this approach in any sort of emergency is beyond my comprehension. Ed Frazer of the British Columbia Amateur Radio Coordination Council was able to help me, and sent my email onwards. Thank you, Ed. My experience is that some amateur radio local groups are surprisingly bad at communicating, especially when it comes to the internet. Some don’t even provide an email contact address on their website. NWARC was formed in 1996 as a non-profit society to deliver emergency communication services. The club is part of BCWARN, a provincial network of emergency operations centers (EOCs) and radio clubs, which support emergency communications.

In the 1990s, I constructed a software Morse code trainer in Pascal that ran on a PC. It would read a written document stored on a file, then produce an audio version through a speaker at a speed determined by the user. In 2002, in Molde, I undertook amateur radio studies, but quickly realized that I would not succeed, and did not even attempt to take the exam. This was because, at that time, the certificate included a requirement to communicate in CW = continuous wave = Morse code, outside of radio circles. This requirement ended in 2003. Yes, I should have used the Morse code trainer more!

In the early years of the new millennium, I was in contact with another radio amateur with my very name, Brock A. McLellan (KC8KOD), with A in his case standing for Adam. However, this communication was about our common ancestry, not radio. Information obtained more recently from my sister-in-law, Aileen Adams, leads me to believe that he and I are more closely related than I was aware of at the time. He currently lives in Bad Axe, Michigan.

If one listens to amateur radio operators, there are any number of good reasons to become licensed, including the opportunity to connect with people around the world, and to participate in any number and type of competitions. There are many different radio bands (including 160, 80, 40, 20, 6, 4, 2 meter, and 70 cm nominal wave lengths) that use different types of equipment, especially antennas, and different modulation techniques (such as SSB = single side band, a form of AM = amplitude modulation; and, FM = frequency modulation) that are used for different purposes. These opportunities were not what has attracted me. If I want to talk to someone on the far side of the world, my preferred method is to use Signal software, with a headset attached to a laptop. In addition, I have a hand-held device aka cell/ mobile phone.

Yet, there is a use for real world radio transmissions by amateurs, it involves providing emergency communication in situations where broadband internet and cell phones no longer function satisfactorily. One scenario could be a power outage leaving a community without the ability to communicate with their outside world. Personal prejudice require me to state that voice radio wastes resources in such a situation, as data-communication is much more effective. Others could argue that CW is even more effective. Regardless, in such situations electrical power becomes a critical resource, typically requiring batteries and mechanisms to charge those batteries. While solar energy is often preferred, this is not particularly useful in the winter, above 60° latitude.

Many members of local search and rescue organizations express an interest in amateur radio, until it comes time to actually learn something about it. In part, this is because they generally prioritize hands-on activities in the outdoors, rather than spending time indoors learning tedious details about electronics and radio-frequency communication. However, both types of people may be needed in an emergency situation.

For example: On 2020-12-30, a quick clay landslide occurred in the early morning hours at Ask village, the administrative centre of Gjerdrum municipality, Norway. The flow off area spanned 300 by 700 metres, but the landslide caused an additional 9 hectares of debris flow. Several buildings were destroyed, most of them houses and apartment buildings. Initially, it was thought that 30 people were missing. In the end, thirteen people were rescued, while ten lives were lost. At first, one could only look for survivors from a helicopter due to safety concerns. Then it was decided to send search crews, including dogs, into the landslide area. Each searcher was equipped with a tracker, which is useful, because then the precise location of each is known at all times. Monitoring of the searchers was performed by radio amateurs.

I don’t ever expect my radio equipment inventory to include a conventional amateur radio transceiver = sender and receiver. In part this relates to my interest in computers and software, and my obsession with miniaturization, and power minimization. In amateur radio circles this codes as QRP operation. If 1 000 W of transmission power is allowed in Canada and Norway (1 500 W in USA), then 100 W is good, but 5 W is better, and is often regarded as the defined limit for QRP, although some might allow 10 W. Extreme minimalists, willing to restrict their power to 1 W or less, code as QRPP. I am not quite at that point. Note 1: There are power limits specified by the band, type of broadcast, certificate status, and country. Regardless, one may only use the amount of power needed to communicate, which could be considerably under these limits. Note 2: One of the earliest proponents of QRP was Karl E. Hassel (W9PXW, ex-8AKG and sometime user of 9ZN, 1896 – 1975), a co-founder of Zenith Electronics, the American radio/ television manufacturer, the company that invented the remote control!

My primary interest in radio relates to education as a mechanism to make a more equitable world. At one time, our family’s major charity was an educational program for girls in countries that restricted their opportunities, such as Haiti. Then, the charity itself made it technically too difficult to route funds from Norway to them. Despite this, supporting education is a primary interest. Thus, when I think of radio it is in a context of technology that can provide educational opportunities to everyone, but especially to those who have been denied it from before. Thus, my interest is broader than amateur radio, yet more selective. It should be further noted that my interest is related to technological solutions, rather than educational content or its dispersion in the real world.

In order to make the world a fairer place for everyone, I am an advocate of open-source hardware and software. However, I am also aware that much of this software on offer is second-class. Transforming this into world-class software is challenging. I am currently developing online lectures in Norwegian on topics related to open-source hardware and software along with other computer related topics, and their intersection with amateur radio. These will be presented as part of the Bergen Group’s lecture series, held every other Monday at 20:00 CET/CEST.

Not all radio activity requires a licence. Citizen’s band (CB), known as Private Radio in Norway and much of Europe, and renamed Citizen’s radio in USA, does not have this restriction. It is a land mobile radio system allowing short-distance person-to-person bidirectional voice communication using two way radios operating on 40 channels near 27 MHz (11 meter). Some countries require users to register and to use an assigned call sign. Since 2021-09, USA’s FCC approved the use of narrowband FM modulation for the CB Radio Service, analogous to the European CEPT standard. Readers who are uncertain as to whether they want to become involved in amateur radio, may find that they want to start with CB, which could give them a taste of opportunities, despite its many shortcomings. My CB handle is Marmot.

I would also like to thank my son, Alasdair, for providing me with my first transceiver, a TYT TH-UV88 hand-held analog two-way radio operating on VHF and UHF FM amateur bands. He has a matching unit. While some people advertise these units for US$ 40, that is without anything, including postage and taxes. Thus, one should expect to pay about US$ 100 for a radio equipped for operation in the field.

This radio will soon be supplemented with a Red Pitaya STEMlab 125-14 unit for SDR = software defined radio. Alasdair has one of these. As usual, I find it convenient to buy identical equipment to people I know, so that I can take advantage of their experience and insights. SDR is often used in mobile communication. Remote software updates are used to improve hardware, update standards and implement new protocols.

Antennas and radio masts are problematic, especially for MF = medium frequency, and HF = high frequency communication. This summer, our old flag pole was removed, and a new one has been purchased and installed at a different location on our property at Cliff Cottage that should allow it to function as a radio mast. The next step is to provide a suitable coax cable connection from my desk to the base of the flagpole.

Another of my interests in radio relates to audio circuitry. Admittedly, my main audio interest relates to synthesizers, but also music more generally, including audio production (with and without video). This interest stretches back in time. In my youth I soldered together a Heathkit receiver, that eventually worked. Later, I made active speakers equipped with their own power amplifiers. My interest in synthesizers also emerged at this period, but they were far too expensive to consider making at the time. New Westminster public library was my primary source of information. In addition to many other unrelated topics, I regular read their books and magazines about electronics. My favourite magazine was Elector, which came out in an English edition, starting in 1975. After discussing it for many years, I now have a green (digital version only) subscription to it, that includes access to all back issues. I find it equally fascinating to read both new and ancient articles about the same topics, while admitting that progress in electronics is almost overwhelming.

Much of my teaching after 2008 involved the use of Arduino Uno microprocessors. The Arduino project was started at the Interaction Design Institute Ivrea (IDII) in Ivrea, Italy. These used Atmel ATmega8 microcontrollers. The AVR architecture was developed by two students at the Norwegian Institute of Technology (NTH) in Trondheim, Alf-Egil Bogen (1967 – ) and Vegard Wollan (1967 – ). For students allergic to computer hardware, I have often developed projects using Processing, a graphical library and integrated development environment (IDE) built for teaching non-programmers the fundamentals of computer programming in a visual context. Processing was developed by Chris Rea (1972 – ) and Ben Fry (1975 – ).

Because of various issues of deception related to Arduino, I have abandoned it for Raspberry Pi boards, based on Broadcom processors. The Raspberry Pi project originally promoted the teaching of basic computer science in schools, especially in developing countries. The boards are inexpensive, modular, and have an open design. They are extensively used by radio, computer and other electronics hobbyists.

People simply wanting to be entertained with amateur radio may want to see one or more of the many movies about this topic. Personally, I am currently watching films (or at least scenes) about amateurs using radios, including: Nancy Drew, Detective (1938); Handle with Care (1977), originally released as Citizens Band; and, El Radioaficionado = The Radio Amateur (2021).

For those wondering, let me state explicitly that I have no intention of raising homing pigeons. Those with an interest in these birds are encouraged to read Arthur Ransome’s (1884 – 1967) Pigeon Post (1936), the only book in the Swallows and Amazons series that does not involve some form of sailing.

I would especially like to know if any readers of this weblog are themselves radio amateurs, or are engaged in radio transmission in other ways. Readers of this post wishing to discuss amateur radio, superficially or in depth, are asked to contact me privately.

This post was originally written on 2021-05-14 starting at 22:00. It was updated immediately prior to publication.