This is a Volkswagen Sportswagen HyMotion vehicle with H2 fuel cell technology. The photo is from 2014, and shows technology developed by Ballard Power Systems of Burnaby, British Columbia. Photo: Volkswagen.

HyMotion is the name Volkswagen applied to its hydrogen fuel cell prototypes. This post is mainly about Volkswagen, a company that was forced to transition to electric vehicles, because of Diesel-gate. The American Environmental Protection Agency (EPA) , had found that Volkswagen had intentionally programmed turbocharged direct injection (TDI) diesel engines to activate their emissions controls only during laboratory emissions testing, which caused the vehicles’ NOx output to meet US standards during regulatory testing. However, the vehicles emitted up to 40 times more NOx in real-world driving.

About the same time, concerns about the danger of global warming led many countries to set up a timeline to phase out fossil fueled vehicles. It is actually a case of too little, too late. The European Union seemed to be heading in this direction, but then on 2023-03-28 it approved legislation ending sales of new carbon-emitting cars by 2035, but made an exception for E-fuel based internal combustion engine (ICE) cars, due to lobbying from Germany. That means ICE cars will continue to be available for sale after 2035, but will need to be fitted or retrofitted with fuelling inducement system technology to prevent the use of fossil fuels. E-fuels are synthetic fuels, regarded by some as carbon neutral because they are produced by capturing CO2, which offsets the emissions from usage. Carbon neutrality is not always the case. In contrast, hydrogen vehicles emit water vapour and warm air, while BEVs have zero tailpipe emissions.

The challenge is that billionaires, and other wealthy people immediately under them in terms of class, want supercar toys, powered by E-fuels. What E-fuel advocates either fail to understand, or more likely are not concerned about, are the dangers of combustion on living creatures, particularly the role of PM 2.5 particulates. In addition, vehicular noise pollution also becomes an issue, as people seek quieter cities, and other places to live.

After the Diesel-gate scandal broke in 2015, Volkswagen saw electrification as a way to redeem itself. New fossil-fueled light vehicles will not be available for sale after 2024-12-31. Many brands, including Hyundai, have already stopped selling ICE vehicles. Volkswagen in Norway will not sell them after 2023-12-31. Already now, almost 90% of light vehicle sales are battery EVs. Hydrogen vehicles are sold, but in insignificant numbers. I am not certain if Norway is following EU regarding E-fuels. However, there will be social pressure exerted on any potential E-fuel users, who will be seen as violators of the Norwegian social contract.

The motivation to write this post, followed an announcement by Volkswagen Group Chief Executive Officer (CEO) Oliver Blume (1968 – ), that the group would transition to hydrogen powered vehicles, after 2030! Previously, 2022-07-03, Blume had supported E-fuels as an effective, complementary solution to making cars cleaner. “Combustion engines can be powered with e-fuels in a virtually carbon-neutral manner. They don’t have to be converted or retrofitted for it. E-fuels can be offered as an admixture or alone at all filling stations. We have to offer an option to the owners of existing vehicles too.” This misses the point that combustion makes a major contribution to debilitating heath issues through the release of PM 2.5 particulates. It also shows his background as CEO of the Porsche division.

In addition, Blume seemed to be more concerned about the economic health of fuel providers. “If produced on an industrial scale, prices of less than $2 per litre could be possible. The important thing is that synthetic fuels are produced sustainably and in places in the world where renewable energy is abundant – then the higher energy input for production is irrelevant. E-fuels produced from water and the carbon dioxide extracted from the air for automobiles, planes and ships have the advantage over pure hydrogen that they can be transported more easily.”

Ballard Power Systems of Burnaby, British Columbia has developed technology for hydrogen fuel cell products, including membrane electrode assembly, plate and stack components. On 2015-02-11 it sold its technology for light vehicles to Volkswagen Group, but retained the rights to this technology for buses and non-automotive uses. Volkswagen introduced its Ballard based technology to the world in the form of four Volkswagen and Audi fuel cell concept vehicles at the Los Angeles auto show in 2014-11.

Since then, Volkswagen has gone on to develop further fuel cell technology. German patent DE 10 2020 119 021 B3 was issued on 2021-07-29 to Volkswagen and Kraftwerk Tubes. It involves a ceramic fuel cell membrane. Allegedly, this is cheaper to manufacture than a polymer membrane, as found on Toyota and Hyundai fuel cell vehicles. It works without any need for an expensive platinum electrocatalyst. Volkswagen states that this will allow them to produce vehicles with a 2 000 km range.

Volkswagen brand’s CEO Thomas Schäfer (1970 – ), said that E-fuels were unnecessary noise, and that hydrogen has some big disadvantages compared to battery technology and that it’s not for Volkswagen, at least not in the next ten years because it is not competitive, especially not for passenger cars, as the fuel tanks take up space in the cabin.

Still earlier, Blume’s predecessor Herbert Diess (1958 – ), criticized H2 fuel cell vehicles, referring to a report from Potsdam Institute for Climate Impact Research (PIK) that concluded hydrogen vehicles are not the way to achieve climate neutrality. Battery electric cars (BEVs) are more sustainable and can be a more environmentally-conscious option for those who are concerned about their car’s emissions.

A move to H2 fuel cells and away from batteries does not seem to be the smartest move, for several reasons. While there are a certain number of early adapters, most of these interested in alternative vehicles have already taken the EV leap/ plunge, finding it a more appropriate solution for themselves than a H2 fuel cell vehicle. This is mainly an operating cost issue, but also a space issue, but increasingly a model availability issue. There are few fuel cell vehicle model choices. EVs have become dominant, with models suitable for a variety of use cases. People are unlikely to reassess their preference for EVs, especially considering that the operating costs of a H2 vehicle are several times higher than that of an EV. Of course, there are others who are brand loyal, irrespective of how stupidly the company they support acts. In Norway, when an EV needs charging, it is typically plugged in at 22:00, when energy prices are lowest. By morning, it is “fully” charged, typically to 80%, to preserve battery life.

A key word is convenience. In much the same way that workers find it more convenient to work at home, and are reluctant to return to the office, most electric vehicle operators find it more convenient to charge at home, and are reluctant to return to a fueling station. Home charging is a habit that grows quickly, especially when commercial high-speed charging is expensive, and offers no to few advantages. H2 is even more expensive.

A previous post discussed the colours of hydrogen, the assorted types of H2 available, based on how it is produced. About 95% of that H2 is methane based, meaning that it is essentially a fossil fuel, that produces CO2. Other types/ colours of H2 are more environmentally friendly, but with the power produced costing about three times more than electrical power from other sources such as wind, solar or hydro. Given a choice, I doubt if consumers would be willing to pay this for this fuel, given the availability of cheaper, more environmentally friendly alternatives (read: BEVs).

In 2023-06, three H2 stations in South Korea received contaminated black hydrogen, produced using steam methane reformation (SMR) — from Korea Gas’ Pyongtaek facility. Proton exchange membrane (PEM) fuel cells used in hydrogen-powered cars need H2 with a purity of 99.9% to safely operate. SMR produces hydrogen (H2), carbon monoxide (CO) and carbon dioxide (CO2). A water-gas shift reaction is usually turns the CO into CO2, while the CO2 is removed using pressure-swing adsorption. In this particular case, some CO or CO2 may not have been properly removed. These impurities can cause irreversible damage, necessitating the replacement of the PEM and other components. For example, CO adsorbs strongly on the platinum electrocatalyst, and CO in hydrogen fuel degrades the performance of the polymer electrolyte fuel cell (PEFC).

On 2019-16-10, an explosion destroyed a Uno-X hydrogen fueling station at Sandvika, near Oslo, Norway. This was covered in one post initially, then followed up in a second post, some two weeks later. More recently on 2023-07-18, hydrogen buses were being fueled at a Golden Empire Transit facility, in Bakersfield, California when one of the buses caught fire. One bus was destroyed and the dispensing portion of the hydrogen fueling station damaged.

In the world there are about 625 public hydrogen fueling stations, according to one source. At the top of the list are: Japan with 175, USA with 107, Germany with 92, China with 88 and France with 40. In Canada there are 8, of which 6 are located in British Columbia (Burnaby, Kelowna, Marpole in Vancouver, North Vancouver (2) and Victoria). There is also one in Mississauga, Ontario and another in Quebec City, Quebec. In Scandinavia, Norway and Denmark have 7 each, Sweden has 5, Iceland has three, while Finland has none. There is actually one located 124 km (1h 51m driving time) south of Cliff Cottage. It is the most northerly in Norway. Except, a Norwegian source states that there are only three H2 fueling stations currently operating in Norway! Interested readers can take it upon themselves to find the correct number of H2 fueling stations in the world. It is probably over 500, but less than 1 000. Currently, one source indicates that there are about 115 000 gas stations in the USA.

Ammonia (NH3) has also been suggested as an energy bearer. This will not be discussed here, except to reference a source for further information.

If Blume is wanting to shift to fuel cells to increase range, he should be aware that researchers at Pohang University of Science & Technology in China have found a way to multiply the energy storage of a battery by ten. An anode stores power when charging and releases it to provide power. Currently, most modern lithium batteries use an anode made of graphite. Other materials, like silicon, have a higher energy capacity, but researchers have been unable to create a stable battery with a silicon anode. This is because the reactions inside the battery cause the silicon to expand dangerously. A research team has created a binding material that will keep a high-capacity silicon anode from expanding.

Currently, the specific energy of a lithium-ion battery is 100–265 Wh/kg (0.360–0.954 MJ/kg). Our Buzz has a 80 kWh battery providing a theoretical 400 km of range. Using the above data, the battery mass should vary from 800 kg to 302 kg. Personally, I see little need for this range to increase by a factor of 10 to 4 000 km. Even the most enthusiastic of users would probably be content with a 2 000 km range. Normal mortals would probably willingly accept 1 000 km,

If the specific energy of a battery increases to 1 to 2.65 kWh/kg (3.6 – 9.54 MJ/kg), then the mass of a battery with a 1 000 km range is probably somewhere between 200 and about 75 kg. A Volkswagen Transporter T6 2.0 TDI has a fuel tank capacity of 80 liters, with fuel consumption per 7.5 liters (combined) per 100 km, or 75 litres for 1 000 km range. The density of diesel is about 0.85 kg/ litre, which means that 75 litres has a mass of almost 64 kg. This does not take into consideration the mass of the storage container. This means that the mass of an EV battery is approaching parity with the mass of diesel.

In 2021, Equinor, Aire Liquide and Eviny started Project Aurora, at Mongstad, Norway. Its goal was to construct a Norwegian liquid hydrogen manufacturing facility for maritime shipping. They estimated that manufacturing costs would likely be ca. US$9.30 per kg. That project was permanently abandoned in 2023-03, because it failed to attract customers. Liquid hydrogen would also be needed for aviation fuels. However, this price is three times the cost of Jet A fuel. Transportation of hydrogen is a major challenge. The US Department of Energy states that a single tanker of gasoline contains 14 times the energy as a tanker of hydrogen. Thus, for both maritime and aviation uses, it may be appropriate to produce H2 near the facilities where it is being used. This situation may also apply to vehicle H2 fueling stations.

It is useful to compare energy pathways. Here, two such pathways will be examined. The first looks at the use of electricity to produce liquid hydrogen, which is used to produce electricity to power, say, an aircraft or ship. Start with 10 MWh of electricty. Turning water into hydrogen is about 70% efficient. There is about 7 MWh of chemical energy in the resulting hydrogen. Compressing, storing, transporting and distribution hydrogen uses another 10%, resulting in 6.3 MWh of available energy. Liquifiction is about 66% efficient, resulting in4.2 MWh of energy. Boil off uses another 5%, leaving about 4 MWh of energy. Burning hydrogen in a jet engine is about 50% efficient at optimum altitude and speed, but is closer to 40% efficient gate to gate. Thus 10 MWh of green electricity provides 1.6 MWh to move an aircraft.

The pathway for a battery aircraft or ship from wind differs significantly. From wind farm to the grid or a battery, it’s about 90% efficient. That results in 9 MWh of energy being available. There is an addition 10% energy loss using electric motors on the aircraft or ship. These would have about 8 MWh of energy available. This is five times the energy available on the hydrogen pathway.

Despite Volkswagen being the automotive brand that I have bought most frequently, I am not a loyal customer. The VW Buzz we currently drive will most likely be our last vehicle purchase. I appreciate having the opportunity to drive a quiet EV, that avoids combustion, and was delivered as a carbon neutral vehicle. I find the comments made by Volkswagen Group CEO Oliver Blume irritating, but not nearly as irritating as some of those made by Tesla CEO Elon Musk.

The final word on this subject will be given to Frank Welsch, Member of the Board of Management of the Volkswagen Passenger Cars brand with responsibility for Technical Development:

"Science is largely in agreement on this issue, as several recent studies have shown. The Federal Ministry for the Environment, for example, assumes that hydrogen and synthetic fuels, so-called e-fuels, will remain more expensive than an electric drive, as more energy is required for their production.The Agora Verkehrswende (traffic transformation) initiative also points out that hydrogen and e-fuels do not offer ecologically sound alternatives without the use of 100 percent renewable energies, and that, given the current and foreseeable electricity mix, the e-car has by far the best energy balance. In the view of the Fraunhofer Institute, synthetic fuels and drive technologies such as hydrogen in combination with the fuel cell will indeed play a role – but not so much in the passenger car sector, but rather in long-distance and heavy-duty traffic, as well as in rail, air and sea transport. These segments will only be converted in later phases of the energy turnaround, i.e. beyond the year 2030, and closely linked to the expansion of renewable energies."

"In fact, hydrogen-based fuel cell technology has one crucial disadvantage: it is very inefficient – both in terms of efficiency and operating costs. This is also confirmed in detail by a Horváth & Partners study, comparing both types of drive for e-cars from the customer’s point of view."

Plasma Kinetics

This illustration shows some of the applications for Plasma Kinetics hydrogen technology, that include aircraft, and assorted types of land vehicles. Presumably, various types of vessels could also use it. Source: Plasma Kinetics.

Hydrogen based storage technology could replace capacitor and battery technology for energy storage in vehicles, vessels and aircraft of various types and sizes. Previously, posts in this weblog have taken up a hydrogen station explosion, and its aftermath. In addition, a flawed report about the economics of hydrogen and methane has been examined.

Plasma Kinetics hydrogen technology was introduced, and patented, in 2008. It was first claimed that the technology was transformational, then disruptive. Almost immediately restrictions were placed on their use of patents, effectively resulting in the technology being banned by the US government. That situation continued until 2017, when it was allowed to be commercialized. There were some restrictions imposed under the International Traffic in Arms Regulations (ITAR), which continues to restrict its export as a missile fuel.

Where Plasma Kinetics technology differs from other providers of hydrogen, is that it does not need a compressed gas infrastructure to capture, move or distribute hydrogen. Instead, one common distribution method is to fill 19 l / 7 kg containers with hydrogen, for sale at assorted local stores. Empty containers can be returned, in exchange for recharged containers.  The stored hydrogen is non-flammable.  Containers of hydrogen can be transported via truck, rail, or ship without restriction.  There is no need to build compressed hydrogen gas stations.  Plasma Kinetics systems are slightly larger, and only moderately heavier, than compressed gas carbon-fiber tanks at 700 bar.  But solid storage containers are much easier to manage than compressed gas, and have a lower overall energy cost, and a cleaner fabrication process.  Safe, non-flammable, hydrogen storage in dense solid form. Hydrogen is zero-carbon. No energy or pressure is required to collect and store hydrogen. No pipelines or fixed structure pumping stations are required. Cassette, canister and other container systems can be easily recharged. Materials used are non-toxic and readily available worldwide. The entire processing process is quiet. 

The nano-graphite film recharges through 150 cycles and is fully recyclable. The reason for this limit, is that the process only works with atomic hydrogen = 1H (where an atom consists of one proton and one electron, but no neutrons). This amounts to 99.98% of hydrogen found in the wild. Deuterium = 2H (where an atom consists of one proton, one neutron and one electron), amounts to 0.02% of the wild hydrogen population. It cannot be used in the energy system, so it accumulates on the film. It can, however, be retrieved when the storage units are recycled, and sold for a profit that exceeds the recycling costs!

Comparison between different hydrogen storage methods. Source: Plasma Kinetics.

My acquaintance with this technology came from a YouTube video (2021-06-24) on the E for Electric channel, when Sandy Munro was asked by Alex Guberman, what he would do if he became CEO of Toyota for a day? Part of his answer involved Toyota acquiring, or at least developing a relationship with, Plasma Kinetics.

Some weeks later, in an interview with Paul Smith (2021-08-12), Smith explains how the technology works, starting at about 5m00s in. He claimed that 15 lbs provides 20 miles of range in a car. With a severe allergy to imperial units, I would probably have said that a 19 l/ 7 kg cartridge would provide an average car with sufficient energy for 30 km. Cylinders for trucks would be 20 x larger (140 kg). Four of those would allow a truck to travel 570 miles = ca. 900 km.

One of the main concerns with this technology is the capability of consumers to replace a 19 l/ 7 kg cartridge every 30 km. People expect a modern electric vehicle (EV) to have a range of at least 300 km, which would require a vehicle to carry ten such units, at a weight of 70 kg. It was pointed out that systems were being developed for the automatic removal and insertion of disks (in cars), and presumably cylinders (in trucks and airplanes).

It was noted that while batteries are extremely efficient, the specific energy of hydrogen, expressed in terms of J/ kg, is three times that of a battery. Except, in some respects, one is comparing avocados with olives! The hydrogen needs to go through a fuel cell for its energy to be converted to electricity.

It should be noted that prior to the hydrogen ending up in some container, water = H2O has been converted in an electrolyzer resulting in hydrogen 2 parts H2 and oxygen 1 part O2. Please do not ask what happens to the oxygen!

Both fuel cells and electrolyzers are becoming smaller, lighter and more reliable. Electrolyzers can be stationed at local wind or photo-voltaic farms, wastewater treatment facilities, or other climate friendly sources.

It was also pointed out that a conventional compressed hydrogen refueling station can cost US$ 2.5 to 3 million. This contrasts with a station for Plasma Kinetics containers that costs about US$ 200 000.

A fuel cell vehicle using this technology should be far cheaper to make than a battery electric vehicle. Some items are eliminated, others are repurposed. For example, the battery cooling system becomes a fuel cell cooling system. Some components remain the same, such as the electric motors. In essence, a heavy battery is being replaced with a much lighter fuel cell and the Plasma Kinetics photo release system for hydrogen. This should give the vehicle improved range.

Paul Smith concludes that interest for the technology is stronger in Asia and Europe, and much less so in North America. A fab = fabrication facility = factory, to make the equipment costs about US$ 100 million.

In EV 2030 predictions, the challenges with fuel cells involve the energy costs of electolyzing hydrogen from water, which account for somewhere between 25% (DC) and 31% (AC) energy loses. Then, processing of hydrogen in the fuel cell costs another 50%. This means that the energy value available to the motors is somewhere between 36 – 38%. In contrast, the energy value available with a battery is about 77%.

Since my prophecy quotient is already used up, I will only speak of dreams. One of which is that dynamic charging along highways will meet much of the vehicular need for electricity, by 2050. Unfortunately, this is not supported by any evidence seen so far. Associated with this dream, is that the cost of dynamic charging technology will be less than that provided by hydrogen containers and fuel cells or equivalent battery based components, in vehicles. An agenda to this dream is that solid-state batteries will become the norm because of their increased specific energy and energy density, and durability. Any such batteries will generally be much smaller and reserved for last mile situations, something a 20 kWh battery would be able to supply.

Hydrogen Station Explosion – Aftermath

The hydrogen station at Kjørbo is centrally located in Sandvika outside of Oslo, by two of the busiest roads in Norway with 80 000 cars passing daily. It is in Bærum municipality, and Akershus county. It exploded on Monday 2019-06-10. Since then, a number of interesting – some might say alarming – facts have emerged.

The station was a joint venture between X-Uno, Nel and Nippon Gases (formerly Praxair), announced on 2016-04-01. It uses Nel technology for on-site hydrogen production from electrolysis. The station is co-located with Powerhouse Kjørbo, an energy-positive office building, that uses solar panels that can supply upward of 200 000 kWh each year, twice the amount of the building’s annual energy consumption. Some of this excess energy was to be used to produce hydrogen.

The project had a total budget of NOK 28.4 million, of which NOK 5.7 million was support from the Akershus County Council and NOK 7.7 million was from the Norwegian public enterprise, Enova, responsible for the promotion of environmentally friendly production and consumption of energy. Other project partners included consulting firm Asplan Viak and Bærum Municipality.

Nel is an electrolysis technology company that has expanded into the hydrogen market. Its roots going back to technology developed by
Norsk Hydro in 1927. It is the world’s largest electrolyzer manufacturer with more than 3500 units delivered in over 80 countries. It is also a world leading manufacturer of hydrogen fuelling stations; approximately 50 stations delivered to 9 countries.

Safety Assessment

Bærum municipality has clearly stated that they did not have the competence to say whether the station was safe or not. They pointed out that the operator Uno-X sent its risk analysis to the Directorate for Civil Protection and Emergency Planning (DSB), relying on the authority to intervene if they saw the station as a security risk.

But DSB did not assess the analysis. Neither do they need to do so with anyone who stores or produces hydrogen in Norway. It emerges from DSB’s overview of hydrogen facilities in Norway, that the limit for having to get approval from the professional authority is actually set so high that it does not apply to anyone.

A total of 5 tonnes of hydrogen can be stored before it is subject to major accident regulations. Then another regulation on the storage of hazardous chemicals enters, which requires consent from DSB. That said, 100 grams of hydrogen can cause a serious situation if it is handled incorrectly, and less than one kilogram can lead to a fatal accident.

The 5 tonne limit is taken directly from Seveso, the relevant EU directive, which has been placed in the Norwegian major accident regulations. DSB is nevertheless free to demand that organizations obtain approval even if they are below the limit. However, DSB must argue that the risk dictates it, and then make a decision. It was not done at the hydrogen filling station in Sandvika. DSB is now also asking whether the limit of 5 tonnes of hydrogen is reasonable.

The amount of hydrogen stored when it exploded in the Uno-X station in Sandvika is uncertain, but in the safety analysis, the company estimates that they would store up to 100 kilograms during the first 1-2 years.

Leakage without Alarm

Perhaps the most disturbing fact emerging is that there was a hydrogen leak for an estimated 2.5 hours, that did not set off any alarms before the station exploded.

Nel installed the technology at the station and has admitted their responsibility for the explosion.

They are now reacting to the accident with a four point action plan. First, with a verified plug solution, they intend to inspect all high pressure storage units in Europe, and to check and re-torque all plugs. This should prevent the same circumstances arising in the future.

Second, they are updating their routines for assembly of high pressure storage units. This includes the introduction of a new safety system, and routines that follow an aerospace standard. This includes torque verification, double witness and documentation/marking.

Third, there is a need for improved leak detection, since it is estimated that hydrogen leaked from the tank for 2.5 hours, without this being detected. Thus, no alarm sounded before the tank exploded. Initially, this will involve a software update to increase leak detection frequency. However, they will also consider additional detection hardware and/ or modifications to the existing equipment.

Fourth, ignition control measures will have to be implemented. These are site dependent. A smooth surface, without gravel, should surround any high pressure storage unit. Additional ventilation may also be required, along with greater use of EX-equipment. That is, electrical equipment specifically designed for hazardous locations. This type of equipment should be specially designed and tested to ensure it does not initiate an explosion, including – but not restricted to – those due to arcing contacts or high surface temperature of equipment.

Incorrect Assembly of Equipment

The safety consulting company Gexcon, along with SINTEF and Bureau Veritas, is responsible for investigating the accident. They have found that a plug in one of the hydrogen tanks was mounted incorrectly and that this is why hydrogen leaked into the air and formed a cloud that eventually exploded.

On Friday, 2019-06-28, Nel, the company manufacturing the hydrogen distribution equipment, and who has taken responsibility for the explosion, explained how the incorrect assembly took place. Their presentation – which appears to be part public relations information about the company and part explanation for the incident – is here.

  1. Materials OK
    1. Magnetic particle inspection
    2. Penetrant testing
    3. Verification of materials
  2. Design OK
    1. 1 000 000 cycle accelerated test
  3. Assembly NOT OK
    1. Bolt analysis
    2. Physical gap
    3. Opening torque
  1. Starting condition.
    1. Green bolts torqued properly
    2. Blue bolts not torqued properly
  2. Red sealing fails.
    1. Starting with small leak on red sealing area
    2. Small leak wears red sealing out and escalates
    3. Large leak exceeding capacity of leak bore, causing pressure increases inside blue sealing area
  3. Bushing with Plug lifts and the blue seal fails.
    1. Insufficient pretension of bolts leads to lift of the plug and blue sealings fail immediately
    2. Spread of Hydrogen leaks out in uncontrolled way

There are two main candidates for ignition that are probably impossible to distinguish between. These are: 1. Self-ignition by static electricity mixed with optimum amount of oxygen and hydrogen led to ignition. 2. Gravel on the substrate at the tank, which lay at the very bottom in one corner. Wind acting on the gravel may have caused friction which led to ignition.

An additional report is expected to be released at the end of august 2019.

V2: The content was updated 2019-06-30 at 17:30.

Hydrogen Station Explosion

2019-06-10, the Uno-X hydrogen station at Sandvika, near Oslo, Norway, was destroyed in an explosion. The explosion led to the activation of airbags in two nearby cars. (Photo: NRK)

An explosion, most likely in a single hydrogen tank, occurred at the Uno-X hydrogen station at Sandvika, near Oslo, on 2019-06-10. When writing this post, the cause of the explosion was not known.

While no one appears to have been directly injured in the explosion, two people driving in the vicinity were injured when their airbags activated because of air pressure from the explosion.

The explosion resulted in the closing, in both directions, of two major highways. European Highway 16 (E16) is the major east-west connection between Bergen and the Swedish border. The E18 connects southern Norway with Oslo.

For those interested in robotics, a LUF 60 wireless remote controlled mobile firefighting support machine, was actively used to suppress the fire that followed after the explosion. More importantly, it was used to cool other unexploded hydrogen tanks, to prevent them from exploding. In addition, a platform lift with water canon assisted with this task. These two vehicles allowed firefighters to keep their distance.

Norway’s other two hydrogen stations, one in Skedsmo, another Oslo suburb, and the other in Bergen, have now been closed.

According to Norwegian Hydrogen Forum as of 2018-12-31 there were 148 hydrogen cars registered in Norway: 57 Toyota Mirais, 27 Hyundai Nexos, and 64 Hyundai iX35s. In addition to this there are 5 buses and 1 truck. In contrast, as of the same date there were 200 192 plug in electric vehicles, plus 96 022 hybrid vehicles.

In another post titled Methane vs Electricity, a significantly flawed study from the Munich-based IFO Institute for Economic Research, was examined, along with its support for methane based, hydrogen vehicles.

With this explosion, hydrogen supporters in Norway will have lost much of the little good will that hydrogen fuel cells have built up. It has probably resulted in the last nail being put into the hydrogen car coffin.