Electriciens sans frontières

The installation of electricity networks is essential for social and economic development. Important buildings in every community, such as schools and hospitals, run better with electricity. Roads become safer, and electricity can be used to give people access to clean drinking water.

A lack of electricity imposes social injustice. Admittedly, I am just a kid of 74, but I have never understood how the world has avoided imposing a universal tax to ensure that everyone has basic services/ infrastructure, such as electricity, clean water, wastewater removal, roads, even the internet.

In terms of electricity:

Close to 1.5 billion people still have no access to electricity. The majority of them live in Asia and sub-Saharan Africa. 80 % of these live in isolated rural areas and are excluded from development policies.

Three billion people are still dependent on traditional energy sources (candles, paraffin lamps, wood, etc). These forms of energy are often harmful and cause 4,3 million deaths each year.

Sustainable Development Goal No. 7 adopted by the United Nations General Assembly is to “ensure access to affordable, reliable, sustainable and modern energy for all”.

In terms of water:

50 % of the world’s population still does not have access to adequate quantities of drinking water.

2,4 billion people, i.e. 30% of the world’s population, do not have access to adequate sanitation.

663 million people live without having a source of clean water.

The aim of Sustainable Development Goal 6 adopted by the United Nations General Assembly is to “ensure availability and sustainable management of water and sanitation for all”.

Helping to provide solutions

Electriciens sans frontières (ESF) = Electricians without borders, is a non-governmental international solidarity organization (NGO) created in 1986 and recognized as a public utility by the French Ministry of the Interior on 2013-05-23. It works towards equality of access to electricity and water in the world. It promotes economic/ human development using renewable energies.

Bruno Léchevin (1952 – 2020), a French union leader, is credited with starting ESF in 1986, asking workers in the French electrical sector to use their skills on international solidarity/ development projects, so that electrical energy could act as a developmental lever.

ESF’s goal is to improve the living conditions of the poorest populations, living with energy poverty. It leads access to electricity and water projects in many countries in Africa, South Asia and Latin America. ESF also intervenes during humanitarian crises, notably in the Philippines in 2013 and 2015 following typhoons Haiyan and Ruby; in 2015 in Vanuatu after cyclone Pam; in Nepal after the Gorkha earthquake in 2015; in Haiti after earthquakes in 2010 and 2016; and in 2017 in Saint Martin and Dominica following the passage of hurricanes Irma and Maria.

Since 2017-12-19, ESF has been a partner of the Le Centre de crise et de soutien (CDCS) = Crisis and Support Center, to intervene in the event of a humanitarian crisis.

CDCS was founded in 2008, and is a department of the Ministry for Europe and Foreign Affairs (MEAE). It is responsible for monitoring, anticipating, alerting and managing crises taking place abroad and requiring actions in response to a humanitarian emergency, and post-crisis stabilization support. Admittedly, it is specifically concerned about events that threaten the safety of French nationals abroad.

Within the CDCS system, ESF intervened after the Celebes earthquake in Indonesia in 2018; after cyclone Idai in Mozambique in 2018; in Lebanon in 2020, after the port of Beirut explosions.

ESF receives financial support and contributions in kind (labour, equipment, working space) from individual donors, companies, private foundations and public institutions. Volunteer work by members are significant, and represent more than that provided as financial aid.

ESF received the UN Climate Action Award at COP25, for its achievements on the island of Dominica. It received the Zayed prize for sustainable development, following its training program in a Rohingya refugee camp in Bangladesh.

ESF has defined a vast intervention program for African health care centres, whee each requires an individual response. Needs include: rehabilitation of solar photovoltaic production plants, and even emergency generators in certain cases, in order to guarantee a reliable electricity supply; the refurbishment of interior electrical installations, in order to prevent electrical risks and to allow the use of high-performance medical equipment; installation of surge protectors to protect solar power plants in case of storms; electrification and lighting of additional spaces to increase facility capacity; the provision of refrigerators and respirators; installation of solar pumps to meet water needs; deployment of solar street lights to secure access to health care centers. Starting in 2020, ESF launched programs in 8 African countries: Togo, Burkina Faso, Mali, Cameroon, Senegal, Benin, Niger and Madagascar.

Because the protection of human lives is its first priority, ESF is currently asking for funding to support its work in Ukraine. Their mobilization aims to be strong and long-lasting, but requires external financial support to effectively meet assessed needs.

The French model has been replicated: In Germany, by the NGO Elektriker ohne Grenzen (2012); In Italy by Elettrici senza frontiere (2015); in Spain by Electricistas sin fronteras (2016); In Switzerland by Electriciens sans frontières – Suisse (2018).

The North American (USA and Canada) NGO, Electrical Workers Without Borders in North America (EWWBNA), joined the international network in 2017. Its founding in 2016 is attributed to the efforts of Edwin D. Hill (1937 – 2018) who, as retired international president of the International Brotherhood of Electrical Workers (IBEW), built up the organization. Unfortunately, the EWWBNA devotes about half of its website as a eulogy to its founder, which is an inappropriate resource allocation.

These six ESF organizations have signed an agreement specifying their mutual engagements.

There is an English language ESF website.

Part of the reason I became attracted to ESF are its videos, made by another French NGO, Sikana TV in collaboration with ESF. These provide an introduction to electrical work, so that young people can understand what it entails.

Sikana was founded in 2014 with the aim of equipping people with practical skills through free educational video programs. They observe: that billions of people do not have access to teachers to help them acquire basic skills, unlock their potential and lead happy and dignified lives; three billion people have access to screens that can be transformed into tools for instruction. Video is a powerful and cost-effective medium to promote skill acquisition, as well as health and environmental awareness.

Numbers: 400 million lessons delivered to 230 countries on 2 300 videos in 16 languages with 75 pedagogical programs. They gather communities of volunteers and expert organizations to co-create educational solutions. These are involved in the entire creation process: writing, production, dubbing, dissemination, and development of IT tools. They create pedagogical programs on a wide range of topics: Health, environment, vocational skills, sports and more. Innovative technological tools enable people to collaborate and design content, translate and subtitle it and to make it available to the widest possible audience.

Factory is Sikana’s collaboration tool, allowing volunteers to translate and subtitle educational videos, from their homes. People who are fluent in at least 2 languages can help translate videos that can then be used to provide subtitles and dubbing. Both are needed because some people are illiterate, and cannot read subtitles, while others have hearing disabilities, and cannot hear dubbing.

Digital content is uploaded on the sikana.tv website and shared with partners who disseminate the content in the field. These partners include: Library Without Borders, Learning Equality, Electricians Without Borders, and the Digital Empowerment Foundation.

Sikana France has offices in Paris, Sikana Brazil has offices in Rio de Janeiro, Sikana India has offices in Pondicherry, Sikana Mali has offices in Bamako, and Sikana China has offices in Fuzhou.

The Electricity for Everyone series provides practical lessons to help anyone install electricity in their own residence. Topics are divided into five chapters: 1. An Introduction to electricity (8 videos); 2. How to Prepare Your Workspace (2 videos); 3. Electrical Boards (7 videos); 4. Lighting and Connections (7 videos); 5. Making-Of (1 video). The video lessons are suitable for two main groups of people. First, as a means of introducing individuals to the principles of electricity and to basic circuitry. Second, as a teaching aid to be used by trained electricians, to pass on their electrical knowledge/ skills/ insights to people who need it the most – particularly in the developing world and areas where access to electricity is unstable.

The videos emphasize risks when installing electricity and how to avoid them, how to save energy and how to get the most out of your electrical household appliances.

Another co-operative venture between Sikana and ESF consists of three videos about the installation of solar panels in the Discover Renewable Energy series.

A third series, Lower Your Energy Bills, does not involve ESF, but has been produced with the assistance of the Energies Solidaires organisation, and Energio, a research centre specialising in managing and economizing energy consumption. It is particularly concerned with fuel poverty. It is divided into five chapters: 1. Eco-tips (4 videos); 2. Saving on Your Heating Bills (3 videos); 3. Know Your Energy Consumption (4 videos); 4. Insulating Your Home (5 videos); and, 5. What is Fuel Poverty? (3 videos).

All of the videos produced by Sikana are free to watch and share. They can also be downloaded directly from the video player.

Chitin & the Electrolytes

The above title is designed to attract curiosity. Yes, it could be the name of a band, but it isn’t. Instead, it involves a proposal to take a potential recycling challenge and to turn it into an electrolyte for use in electric vehicles and integrated battery systems, equivalent to the Tesla powerwall.

Chitin is found in fungi, insects and crustaceans, such as crabs, shrimps and lobsters. It is a polysaccharide = sugar, that makes shells hard and tough. However, because large quantities of crustacean chitin is discarded as food waste, its use has been researched in a variety of applications. In biomedical engineering, for example, it is used as a wound dressing, or as an anti-inflammatory treatment.

By adding acetic acid = vinegar, and processing it chemically (deacetylation), chitin can be synthesized into a gel membrane that can be used as a battery electrolyte = the liquid/ paste/ gel inside a battery that conducts electric current, using ions = positively and negatively charged particles that migrate towards the negative (cathode) and positive (anode) terminals, respectively, allowing it to store energy. This transformation is shown in the illustration below.

The formation of chitosan from chitan using acetic acid. Source: Vicente Neto

When this electrolyte is combined with zinc, it can create a cheap, non-flammable and renewable battery. After 1 000 cycles, the battery is still 99.7% energy efficient. This contrasts with Li-ion batteries, where such a large number of battery cycles can significantly degrade the battery. This is a rare battery characteristic, allowing these batteries to operate at high current density.

Another advantage of a chitin based battery, is that microbial degradation in soil can break down the battery in about five months, leaving zinc behind as a recyclable product.


A University of Maryland press release, provides source information about the chemical process for anyone wanting to investigate this topic further.

Report Summary: Rechargeable aqueous Zn-metal battery is promising for grid energy storage needs, but its application is limited by issues such as Zn dendrite formation. In this work, we demonstrate a Zn-coordinated chitosan (chitosan-Zn) electrolyte for high-performance Zn-metal batteries. The chitosan-Zn electrolyte exhibits high mechanical strength, Zn2+ conductivity, and water bonding capability, which enable a desirable Zn-deposition morphology of parallel hexagonal Zn platelets. Using the chitosan-Zn electrolyte, the Zn anode shows exceptional cycling stability and rate performance, with a high Coulombic efficiency of 99.7% and >1,000 cycles at 50 mA cm−2. The full batteries show excellent high-rate performance (up to 20C, 40 mA cm−2) and long-term cycling stability (>400 cycles at 2C). Furthermore, the chitosan-Zn electrolyte is non-flammable and biodegradable, making the proposed Zn-metal battery appealing in terms of safety and sustainability, demonstrating the promise of sustainable biomaterials for green and efficient energy-storage systems.

While originally written 2022-09, publication of this post has been delayed to coincide with the Sharm el-Sheikh Climate Change Conference (COP27) held 2022-11-06 to 18. Politicians love such conferences, using them to receive undeserved publicity for making big promises, that they have no intention on keeping.

Because climate change is real, my hope is that people will:

  1. Use the coming year to find ways to reduce their carbon footprint.
  2. Hold their politicians accountable.

It is also hoped that some, select few people will find this battery concept so interesting that they will use some of their free time to develop an open-source battery. Should one be developed, I am interested in purchasing a 50 kWh battery system, to provide backup when the grid decides to go offline. I would also appreciate being kept informed of developments.

With this weblog post (#451) published, I have 52 posts scheduled, and most of those have been written! In addition there are 71 weblog posts, in draft format, that remain unscheduled. To ease that situation, weblog posts will be published twice a week, on Saturday and Sunday, until the end of 2022. This will add seven posts to the publication schedule. Some of these deal with the 2022 United Nations Climate Change Conference (Cop27), currently being held at Sharm el-Sheikh, Egypt.


This weblog post is written to celebrate the upcoming 10th anniversary of Vortex Bladeless, as a concept, and the 81st anniversary of the collapse of the Tacoma Narrows Bridge on 1940-11-07. I have watched videos documenting the bridge collapse many times, and shown these to students in science classes over the years. Unfortunately, I lacked the insight of David Yáñez who was able to see the potential of oscillations in the generation of electricity.

David Yáñez and the Vortex Bladeless Tacoma at Avila, Spain in 2019. Photo: Vortex Bladeless.

Preliminary considerations

Living on a cliff-face, the residents at Cliff Cottage experience some wind, but less than many people might expect. The one-word reason is updraughts. That is, when the wind hits the cliff, it is deflected upwards, and then over the house. While the residents have considered installing horizontal bladed wind turbines at the cliff-face to provide electrical power, that take advantage of these updraughts, there is probably too little energy to make any investment economically worthwhile.

For example, a product was being offered on Kickstarter. On 2020-09-29, Nick Hodges, founder of Halcium, in Salt Lake City, UT, launched a funding round for (yet another device referred to as) a Powerpod, which was described as the “safest, most powerful wind turbine in the world”. He set US$ 200 000 as a minimum goal. When the fundraising period ended at the end of 2020-10, the goal was not met.

The product offered by Hodges, was not ideal for Cliff Cottage. The wind we are interested in using comes from one direction only, so being able to take advantage of wind coming from anywhere does not offer any advantages.

A major problem with the Kickstarter launch was an amateur approach to the electrical technology. After reading a description of the project, one was left with more questions than answers. Hodges apparently has a degree in small business management and an MBA with a finance emphasis from Arizona State University.

As another resident pointed out to me, entrepreneurship requires three competencies, finance (and related areas of business management), marketing and technical competence. From the material presented, it was obvious that Hodges had marketing competence, but lacked science and engineering skills.

For example, he claimed that Powerpods are “cheaper than solar panels and more efficient in places that get fewer than 300 days of sun a year.” When examining this statement, it is difficult to understand the specific apples and oranges being compared and contrasted. The number of square meters of solar panels is unspecified. Wind speed is an unknown factor, and there didn’t seem to be any documentation that related wind speed to power produced, only an attractive graph comparing power from a Powerpod with power from a normal wind turbine, whatever that is.

The number of days of sun is an unusual metric. Sunshine duration in hours per year is more common, something that can be determined using a World Meteorological Organization (WMO) standardized Campbell-Stokes recorder, which has been in common use since 1962. In 2003, the sunshine duration was finally defined as the period during which direct solar irradiance exceeds a threshold value of 120 W/m2.

There are claims that each 1kW in the Powerpod wind turbine creates up to three times more power than a regular, mounted turbine. The extra power comes from the blade system in the pod. While there is a graph showing this magic, there appear to be no supporting documents. There are no wind speed or power measurements, In fact, the graph incorrectly expresses power in volts, rather than correctly in watts.

The Powerpod system uses 12 Volt components. These are typically used on recreational vehicles to be compatible with vehicle electrical power systems. While they are used in residential systems, 48 V is quickly becoming the new standard. In part, this is because of the high amperage involved with 12 or 24 V. Transmitting 960 W of power with a 12 V system involves wiring capable of transmitting 80 A. With 48 V this is reduced to 20 A. Of course, if this power has to be transported any distance, it will have to be even thicker. Thick wiring is expensive and difficult to obtain.

Hodges goes on to compare wind and solar energy. In Norway it costs from NOK 30 000 to NOK 120 000 to have solar cell panels installed on an average single-family dwelling. This is typically financed by re-negotiating an existing mortgage. On average, the payback time for such an investment is about 17 years. The life-expectancy of the solar cell panels is from 25 to 50 years, and manufacturers offer a 25 year product guarantee on the solar cell panels, so that house owners do not face additional risks. Inverters may have a shorter life-span, and are not usually covered by the guarantee.

Unfortunately, the climatic situation in Norway means that solar panels can only produce substantial quantities of electricity during the summer. It is not that the equipment doesn’t work in the winter. Rather, the sun is close to the horizon, and not visible for many hours. On the date of publication, sunrise was at 08:16, sunset will be at 15:41. This gives 7h24m 43s of daylight. At the winter solstice (2021-12-21) daylight hours will be reduced to 4h17m21s. At the next summer solstice (2021-06-21) there will be 20h53m32s of daylight. Selling power usually requires one to participate in a spot-market, where prices are usually low in the summer, but high in the winter. Despite this, most people who install solar panels in one form or another want to connect to the mains in order to to sell excess electricity, or to access electricity when there is a production deficit. Batteries could be used, but new batteries are expensive. Some people will decide to buy discarded batteries from electric vehicles and store electricity with these. This is a more common model for cabin/ vacation cottage solar panels, less common for primary residences, because the cost is too large in relation to potential savings. Once again, people have risk aversion.

Another approach is to produce electricity in the summer and store it until it is needed in the winter. While the return-on-investment calculation for this looks good, mainly because of the high price for electricity in the winter, a large battery capacity is necessary.

Hodges’ main goal is admirable. He wants to reduce dependence on fossil fuel. He wanted to use the $200 000 funding to mass-produce Powerpods. The money sought would cover the cost of having the product tested, the raw materials for products being sold as part of the kickstarter project, as well as factory tooling.

After reading the project description, I was not totally convinced that Hodges had a viable product, or the necessary skills to make one. Hodges should partner with someone who has the necessary electrical engineering skills. This would allow for the development of the entire infrastructure needed for off-grid power production. These will have to meet agreed standards. At a minimum this consists of battery storage, a suitable inverter and a net metering system to allow produced energy to be used in the residence, or fed to the grid (especially at peak times). The equipment must be able to handle abnormal situations, such as power surges and power failures. The system should also prohibit sending power onto the grid, when it is down, as this could be potentially dangerous for crew members working to restore power.

There are also a number of legal issues that have to be negotiated, including energy purchase and sales agreements, and liability (including liability insurance). The specifics vary from jurisdiction to jurisdiction. Thus, it might be appropriate for Hodges to restrict his sales to Utah, and to find other people to cooperate with in other states, provinces and countries.

At Cliff Cottage we probably won’t participate in such a project. Instead, we will work slowly and methodically to find solutions that meet our specific energy needs. As a first step this will involve measuring wind speeds at the cliff face, to determine if wind energy is viable. If it is, then this process will slowly intensify as we select a more viable solution.

A More Viable Answer

The Vortex Bladeless turbine, popularly referred to as the Skybrator, has its origins in 2012 after David Yáñez watched a video of the Tacoma Narrow’s bridge oscillating in the wind. Since then, Vortex Bladeless, a Spanish tech startup, has been working to produce electricity from oscillations induced by wind.

Vortex Bladeless is a vibration resonant wind generator: It does not rotate, and is not a turbine, in contrast to the common horizontal-axis wind turbines (HAWT) and less common vertical axis wind turbines (VAWT) that work by rotation. Instead, it harnesses energy by allowing a fibreglass and carbon fibre reinforced polymer mast to oscillate in the wind, taking advantage of von Kármán vortices that form when a moving fluid (air) passes over a slender structure (the mast). At the bottom of the mast, a carbon fibre rod moves an alternator to generates electricity.

Wind turbines have issues, including maintenance costs, amortization rates, noise levels, bird deaths and other environmental impacts. Remote locations can have logistics challenges, while their visual and aural impact on a location is not always appreciated. The mass (and dimension) of vortex generators, indicate that they will use less raw materials in their construction compared to rotary wind turbines of the same power. They have a low centre of gravity that allows for a smaller foundation and less wake turbulence. Thus, they can produce more power (greater energy density) per unit of land area.

However, the market Vortex Bladeless envisions if for a small wind-turbine alternative for the end-consumer market and for low-power systems. These are markets that are served poorly (or not at all) by larger-scale wind turbine manufacturers.

  • Vortex Nano – 1 m high and 3 W nominal power output. For off-grid, low-power systems, especially with solar panels.
  • Vortex Tacoma – 2.75 m high and 100 W nominal power output. For small-scale residential/ rural autonomous operation, with solar panels.
  • Vortex Atlantis/Grand – 9–13 m high and around 1 kW nominal power output. For residential/ rural autonomous operation, with solar panels.

All of these are slender, vertical, cylindrical devices, composed of two main parts: a fixed base where the device is attached to an anchor, and a flexible mast which, acting as a cantilever, that interacts more freely with moving fluid (air) in an oscillating movement. The oscillator has no gears or moving parts in contact with each other, so there is no need for lubricants.

A linear alternator, with neodymium magnets and its stator is located inside the moving part of the device, converts mechanical to electrical (chemical) energy. During this process the alternator damps/ cushions the induced oscillation movements. These devices operate with minimal maintenance and operating costs.

Tacoma Narrows Bridge

With newspaper editor Leonard Coatsworth’s car still on the deck, vertical and torsional motion was recorded on the Tacoma Narrows Bridge, 1940-11-07. Oscillations eventually destroyed the bridge. Credit: Library of Congress Prints and Photographs Division.

There is 1.4 km of Puget Sound separating Tacoma from Gig Harbor. Yet, before the construction of the Tacoma Narrows Bridge, one had to drive 172 km between them. With the bridge in place, this was reduced to 13 km. The bridge also linked McChord Air Field near Tacoma with the Navy shipyard in Bremerton, both important elements of the American military’s infrastructure, and probably the most critical one that allowed the funding of the bridge. Washington States bridge engineer, Clark Eldridge, had proposed a conventional design for the state highway department and Toll Bridge Authority. However, the federal Public Works Administration, insisted that bridge engineer Leon Moisseiff, designer of the Manhattan and Golden Gate bridges, be hired as the lead consultant and designer, and to use deflection theory as the basis of the design, producing a lighter, narrower, more flexible and cheaper structure.

Construction of the bridge started in 1938 and took 19 months. When finished, the Tacoma Narrows Bridge had an 853-meter-long centre span, almost half its total length. It was the third longest suspension bridge in the world, behind the Golden Gate and George Washington bridges. It also had the smallest ever width-to-length ratio: 1 to 72. Even before the bridge was completed the bridge deck shook in a wave-like vertical motion. This earned the bridge its nickname, Galloping Gertie. The bridge opened on 1940-07-01.

On 1940-11-07/ November 7th, 1940/ 7 November 1940, south-westerly winds, with gusts up to 68 km/h began to buffet the bridge. The deck began its customary rippling, bouncing up and down with more than a meter of displacement from its normal position at times. Shortly after 10:00 traffic was halted because of bridge deck oscillations. Soon after the bridge’s vertical movement was supplemented by a twisting motion that whipped the deck up and down to either side of the centre of the roadway. The twisting grew increasingly severe, with one sidewalk up to 8.5 meters higher than the other.

At 11:02., a 180-meter portion of the centre span gave way, crashing into the water below. Additional sections followed. The last major section fell at 11:10. With most of the centre span gone, all that was left were dangling suspension cables, a hole between the two towers and remnants of sagging side spans at either end of the bridge.

Earth magazine has an article that provides further information about this bridge failure.


In 2010 the number of people living without electricity was estimated to be about 1.2 billion. By 2019, this had been reduced to about 760 million. The most significant contribution to this reduction, was the installation of small solar systems, powering at village or household scale. According to the World Bank, about 420 million people currently get their electricity from off-grid solar systems. They estimate that by 2030, that number could increase to 800 million.

Unfortunately, such a metric hides more than it reveals. Having an electrical connection or even a solar panel does not necessarily imply access to electricity. On average, the sun is only available as an energy source about 12 hours a day. Energy access must also take into account reliability and affordability, and is most appropriately measured on a tiered spectrum, from Tier 0 (no access) to Tier 5 (the highest level of access).

Many people in emerging markets (and elsewhere) do not have enough money to pay for products in advance. Pay As You Go (PAYGo) models allow these users to pay for their products over time using technology enabled, embedded consumer financing. A PAYGo company typically offers a solar product, such as a solar home systems and multi-light pico devices. The customer makes a down payment, followed by regular payments for a term ranging from six months to eight years. Payments are usually made via mobile money, though alternative methods are sometimes available.

Productive use leveraging solar energy (PULSE) is defined as any agricultural/ commercial/ industrial activity that uses solar energy as a direct input to the production of goods/ services. PULSE enables/ enhances income generation by households/ farms/ microenterprises, often by mechanizing activities that would otherwise be performed manually or by providing additional hours of lighting in which to work. These activities and lighting might also replace non-renewable sources of energy, such as diesel generators or kerosene.

An especially important area for PULSE is for cold storage, refrigeration, and agricultural processing. This means there is a need for a large number of off-grid refrigerators, as well as products for solar milling. The World Bank, in its report, notes the need for specialized products for use in specific value chains such as poultry, dairy, and coffee. The PULSE segment is in its infancy, but has a potential for rapid expansion.

Key trends in emerging markets from 2020 onwards include: 1) Hardware manufacturing and design. Manufacturers are improving product quality, and developing brands for emerging markets; they are providing lower-cost products at consistently higher quality levels. 2) Software development. Software offers customizable and open architectures, that encourages PAYGo models and platforms. 3) Marketing and distribution. While large international companies are leveraging data to optimize sales and distribution, hardware companies are partnering with local distributors to reach previously underserved markets. 4) Consumer financing. PAYGo is encouraging innovation for payment systems. Companies are partnering directly with financial institutions to decouple consumer finance from their business models. 5) After-sales support. Remote monitoring is enabling companies to improve customer service and asset management. They are incorporating e-waste disposal considerations into business models.

The Chinese Belt and Road Initiative is a global infrastructure development strategy adopted by the Chinese government in 2013 to invest in nearly 70 countries and international organizations. Participants involve about 65% of the world’s population. Many of the countries participating are in emerging markets. Here, and elsewhere, Chinese manufacturers will sell higher-quality, self-branded products through local distribution partners and increasingly through their own distribution networks, including on PAYGo. This will increase the amount of high-quality, but lower-cost, products reaching these markets.

What should families in the developing world/ emerging markets do to obtain reliable supply of electrical energy? In many places, utilities (public and/ or private) are unreliable, while new solar panels are too expensive. From about 2010 to 2020, the obvious solution was to buy used solar panels. These panels become available because, in the more developed world, there is economic pressure to make optimal use of roofs and other surfaces, to produce as much power per surface area. This meant the regular replacement and subsequent sale of sub-optimal solar panels. Energy Bin has about 5 million pieces of photovoltaic equipment available on their site, and there are estimates that about 10 million used solar panels are available at any given time, on the global market.

The main source of information about this topic is: Off Grid Solar: Market Trends Report 2020.

Off the Grid

The Briceburg energy system provided by BoxPower. Photo: BoxPower

On 2019-10-07, Briceburg in Mariposa County, near Yosemite National Park, in California, lost the only power line connecting it to the electrical grid in a wildfire that devoured over 20 square kilometers. The system, owned by Pacific Gas & Electric (PG&E), but installed and developed by BoxPower, provides Briceburg with a self-reliant, stand-alone power system made of solar panels in an array, batteries and a backup generator. It began operating 2021-06-01.

The solar array consisting of 36.5 kW of photovoltaic solar panels, a 69.12 kWh lithium ferro phosphate battery bank. This can provide 27.2 kW of continuous power output with a surge capacity of up to 48 kW. The system has two integrated 35 kVA propane prime power generators and a fire suppression system to protect the hardware. PG&E and BoxPower will be able to monitor/ control the system via satellite.

While wildfires in 2019, forced PG&E to file for bankruptcy in 2019, the main reason for using this technology is to improve energy resilience in California as extreme heat, drought and wildfires devastate the American west. Human-based climate change is causing blackouts and disrupting power supply. Wind-storms led utilities to deliberately shut off power to large areas of California to keep high-voltage transmission lines from starting fires. Then 2020-08-14 & 15, an oppressive heat wave forced the California Independent System Operator, which manages the state power grid, to declare a stage 3 emergency Friday night, which set off rolling power outages for the first time since 2001. More than 800,000 homes and businesses lost power.

Meanwhile, back at the Blue Lake Rancheria (BLR), members of the Wiyot, Yurok, and Hupa tribal nations, living northwest of the city of Blue Lake, Humboldt County, California on 0.31 km2 of property, keep electricity flowing using two microgrids that can disconnect from the larger electrical grid, and switch to using solar energy generated and stored in battery banks near its hotel-casino. This is not strictly off the grid, but a supplement to the grid.

After the 2011-03-11 Tōhoku earthquake and tsunami caused local panic but little damage, the tribal nation complex decided to install a microgrid. Humbolt University’s Schatz Energy Research Center was the prime contractor and lead technology integrator for the project. A final report for the project was published in 2019.

Other participants included: The California Energy Commission (major funder), the BLR (site host and major funder), Pacific Gas & Electric (local utility), Siemens (MicroGrid Management System = MGMS), Tesla (battery energy storage system), Idaho National Laboratory (testing and simulation), Robert Colburn Electric (electrical contractor), REC Solar (turnkey PV system), McKeever Energy & Electric (PV installation), GHD, inc. (electrical engineering), and Kernen Construction (civil construction for the project).

It consisted of a 430-kW solar photovoltaic array with a 500 kW/ 950 kW/h Tesla battery storage system and two legacy diesel generators with a combined capacity of 1.8 MW. These are designed to retain electricity after storms/ wildfires/ earthquakes and to supply the grid with power, during peak demand. Construction started in 2015 and was completed in 2017. During the microgrid’s first year of operation it was able to reduce the tribe’s greenhouse gas (GHG) emissions by about 175 tons and lower its energy costs by about $195 000.

The microgrid investment made sense to ensure service and business continuation during nuisance outages that were typical in the region, lasting for an hour or two. The tribe also recognized how climate change was amplifying local impacts including wildfires and volatile weather. This led them to develop a comprehensive lifeline strategy for energy, water, food, transportation and communications/IT. They started with energy, because it supports all the other lifelines.

When the microgrid was constructed, they were not thinking of extended power outages to prevent the grid from causing or contributing to wildfires. Today public-safety power shutoffs happen regularly and they are projected to occur more frequently with a duration of two to five days or even longer. This situation may be the norm for the next decade.

The MGMS automates large portions of microgrid functions. This eliminates the need for 24/7 monitoring, and allows the microgrid to buy and sell power to the larger grid.

As most of sat in the dark during a planned shutoff in October 2019-10-08 to 10, the Blue Lake Rancheria became a lifeline for thousands of rural Humboldt County residents: The gas station and convenience store provided fuel and supplies, the hotel housed patients who needed a place to plug in medical devices, saving at least four lives, the local newspaper used the conference room to put out the next day’s edition, and a hatchery continued pumping water to keep its fish alive.

Islanding: The electrical service to BLR was reconfigured to create one point of common coupling (PCC) between the microgrid and the main utility grid. This PCC includes the powerline protections and control functionality required for the microgrid to automatically disconnect from the main grid during an outage, and then reconnect when grid power has been restored. Operators at BLR can also manually island the microgrid for energy management, maintenance, or security reasons. Seamless transitions between connected and islanded states are unnoticeable to building occupants, and have been approved by PG&E.

Optimal battery dispatch: Under normal conditions, the microgrid uses an energy load forecast, the solar availability forecast, and the current electricity rate schedule to determine when to store energy in the battery and when to dispatch it to the main grid.

Resiliency: If the main grid loses power, the microgrid automatically disconnects and begins operating in island mode. When islanded, the microgrid management system (MGMS) prioritizes clean generation — but if needed, the MGMS can also seamlessly bring a 1 MW isochronous backup generator online to support the PV and battery.

Conceptual Microgrid, as provided by Schatz Energy Research Center