Oatly & Einride: A tidbit

Oatly has devised a process to provide a vegan alternative to milk. Now it is concentrating on making that process more sustainable, but reducing CO2 emissions. Artwork: Oatly.

My personal transition from omnivore to vegan/ vegetarian is proceeding almost as slowly as my transition away from driving a diesel to an electric vehicle. One positive change, is that we purchase our eggs and milk (and some honey as well as produce) from neighbouring farms, rather than grocery stores.

I asked my personal shopper to add some Oatly products onto her shopping list. Instead, she invited me to help her shop at the local Co-operative in Straumen. Thus, I was able to purchase one litre (about a quart) of havredrikk kalsium (oatmilk calcium). Unfortunately, I was unable to find the other products I wanted to try: havregurt vanilje (oatgurt vanilla); havregurt turkisk (oatgurt Turkish) and iMat fraiche (Oat creme fraiche).

Oatly is a Swedish vegan food brand, producing dairy alternatives from oats. Based on research at Lund University. The company’s enzyme technology turns oats into a nutritional liquid food suitable for the human digestive system. The company operates in southern Sweden with its headquarters in Malmö, with a production & development centre in Landskrona. The brand is available in more than 20 Asian and European countries, Australia, Canada and USA.

Oatly claims to be a sustainable food manufacturer. Artwork: Oatly

Oatly also tries to be sustainable, by reducing its contributions to global warming. They also produce a sustainability report. It shows that almost half of Oatly’s contribution to greenhouse gasses comes from the cultivation of ingredients, a quarter from transport, 15% from packaging and 6% from production (p. 26).

Oatly is not perfect. For example, there has been some controversy about it selling oat residue to a pig farm. On the other hand, it has benefited from two publicity attacks. First, Arla, the Swedish dairy company, attempted to discourage people from buying vegan alternatives to cow’s milk (mjölk in Swedish) using a fake brand Pjölk. Oatly responded by trademarking several fictitious brands Pjölk, Brölk, Sölk and Trölk and began using them on their packaging. Second, the Swedish dairy lobby LRF Mjölk, won a lawsuit against Oatly for using the phrase “Milk, but made for humans” for £ (sic) 100 000. When Oatly published the lawsuit text, it lead to a 45% increase in Oatly’s Swedish sales. Once again, this seems to suggest that there is no such thing as bad publicity.

On 2020-05-14, Oatly and Einride announced that Oatly will use four 42-tonne vehicles starting 2020-10 to transport goods from production sites in southern Sweden, using Einride’s Freight Mobility Platform. This is estimated to lower its climate footprint (on the affected routes) by 87% compared to diesel trucks: 107.5 tonnes of carbon dioxide per year per truck, about 430 tonnes per year in total, or 2 100 tonnes throughout the five year duration of the contract.

Part of the solution involves optimizing electric trucks operations using computer-controlled logistics with Einride’s Freight Mobility Platform software. Accurate transport planning allows 24 tonnes of goods to be transported an average of 120 kilometers without charging. It involves optimizing and coordinating drivers, vehicles, routes as well as charging. On a typical shift, three drivers will drive four different trucks. This means that one truck is always charging, which places less strain on batteries, and making the operation more durable and economical.

Oakly’s 42-tonne Einride trucks will feature a DAF glider, with Emoss drivetrain and Einride software. Photo: Einride

This initial iteration involves a DAF glider (a vehicle without a drivetrain/ prime mover/ power source, fitted with a Emoss motor. Future iterations may involve a Einride Pod, previously referred to as a T-pod.


TOGG’s battery electric SUV will be available from 2022. Photo: TOGG

Tog is the Norwegian word for train. TOGG is not a train, but a family of five EV models to be produced in Turkey by a consortium. Two prototypes were unveiled 2019-12-27, consisting of a red SUV and a grey sedan. The Turkish government had guaranteed to buy 30 000 of the vehicles by 2035, or about 2 000 vehicles a year over a 15 year period. Annual production volume is estimated to be 175 000 units a year. An investment of about $3.7 billion will be required between now and 2033.

Turkish plans for a domestically made vehicle were first announced in 2017-11, by a consortium that was formally established in 2018. Shares in consortium member stocks fell after the announcement, in part because of their lack of experience in automotive production. Members of the consortium consist of: Anadolu Holding; BMC Group, a Turkey-Qatar partnership; Kok Group; Turkcell, a mobile phone operator; and, Zorlu Holding, parent of TV maker Vestel.

Turkey’s Automobile Initiative Group (TOGG) project was launched in 2019-10. In addition to assorted forms of state support, production facilities are going to be constructed in Bursa in northwest Turkey. Bursa is already Turkey’s automotive hub. Ford, Fiat Chrysler, Hyundai, Renault and Toyota make vehicles in Turkey, that are exported to Europe.

This lack of automotive competence has now been rectified. TOGG’s CEO is Gurcan Karakas, former Bosch executive. Its COO is Sergio Rocha, former General Motors Korea chief executive. Production will begin in 2022 with compact SUVs.

Turkish president Tayyip Erdogan, regards this project as a demonstration of Turkey’s growing economic power. Thus, TOGG has been launched as a potential global brand, starting with the European market. Erdogan said Turkey’s EV charging infrastructure would be ready nationally by 2022.

Further details will be published as they become available.

The Charm of a Uniti

The production model Uniti One, available in three gray colours. (Photo: Uniti)

Uniti began life as an open innovation project at Lund University in 2015, then emerged as a Swedish electric vehicle startup in 2016. It is developing an advanced city car. What first attracted my attention, was the replacement of the steering wheel with a joy-stick. Most of the mechanical system appeared equally innovative, and claimed to be sustainable, whatever that means.

Prototype development was funded through an equity-crowdfunding campaign on the Swedish platform FundedByMe, with 570 investors contributing €1,227,990.

The design mandate of the Uniti One seems to be in a state of flux. At one time, it was a relatively unsafe L7e quadricycle. Now, thankfully, it is being lauched as a M1 vehicle requiring crash testing, and more safety equipment. Other details, such as seating arrangements have also been subject to change. It was a side by side 2 seater, before it became one with one person sitting behind another. Now it is launching as a 3 seater, with a driver in the middle in front, with space for two passengers behind. Trunk space is adequate to hold a packed lunch and a charging cable, at 155 litres.

With a 50 kW electric motor and 62 Nm of torque, and a mass under 600 kg, the Uniti One can reach 100 km/h in less than 10 seconds. It has a computer controlled top speed of 120 km/h.

The Uniti One comes with an electrochromatic panoramic roof that darkens automatically to keep the car cool when parked in direct sunlight. Its virtual sun visor darkens the top of the windshield when the sun is in the drivers eyes.

An Android operating system controls the infotainment system and most of the standard features of the car. Voice commands can be issued. Its systems are regularly updated over the air.

A high strength safety cage surrounds the driver and passengers keeps interior deformation to a minimum, in the event of a collision. Other standard safety equipment include driver’s airbag, anti-lock braking, electronic stability control and a tire pressure monitoring system. The Intel MobilEye 6 collision avoidance system provides forward collision and lane departure warnings, speed limit indicator, and warning for potential collisions with pedestrians or bicycles and their riders, in real time.

In its current state, what appeals most about the Uniti One is that much of the equipment is optional, which means that people declining options can end up with a lower cost vehicle. Currently, the base model costs about €18 000, before subsidies. The only options I would insist on would be the Intel Mobileye 6 collision avoidance system (€ 700), winter tires (€ 400) and possibly air conditioning (€ 300). This is not a highway vehicle, so a 150 km range with a standard 12 kWh battery and a slow 3.2 kW charger seem adequate. It seems wasteful to spend €2 800 each on a 24 kWh battery and a 22 kW charger.

In terms of a computer vehicle transporting one person and a lunch bag in an urban environment, this is probably a good choice except, in urban environments there is public transport, which would be a better choice.

That said, my greatest disappointment with the production vehicle is its steering wheel, with no joy-stick in sight.

Uniti One interior, available in gray. (Photo: Uniti)

The Charm of an Einride T-pod

The world premiere of an Einride T-pod, a level 4 autonomous, electric vehicle with a mass of 26 tons, on a public road in Jonskjöping, Sweden. 2019-05-15. Photo: Einride.

Robert Falck, a former Volvo executive, is founder and CEO of Einride. Together with, Jochen Thewes, CEO of DB Schenker, a major logistics company, and Mats Grundius, CEO of DB Schenker Cluster Sweden, Denmark, Iceland, he hosted a world premiere on Wednesday, 2019-05-15.

Einride and DB Schenker entered into a commercial agreement in 2018-04 that includes a pilot in Jönköping with an option for additional pilots internationally.

Einride’s signature product is a T-Pod truck. With a Gross Vehicle Weight of 26 tons, its most notable characteristics are its electric drive train, and autonomous driving capabilities. These two features reduce road freight operating costs by about 60 percent compared to a diesel truck with driver.

However, Einride wants more, a safe, efficient and sustainable road freight transport solution, that can reduce CO2 emissions by up to 90 percent

The T-Pod is level 4 autonomous, the second highest category. It uses a Nvidia Drive platform to process visual data in real time. An operator, sitting anywhere in the world but most probably in Jonsköping, can supervise and control up to 10 vehicles simultaneously. The T-Pod has permits from the Swedish Transport Agency to make short trips – between a warehouse and a terminal – on a public road in an industrial area in Jonkoping, located in central Sweden, at speeds of up to 5 km/h.

In 2018-11, Einride and DB Schenker initiated the first installation of an autonomous, all-electric truck or “T-pod” at a closed DB Schenker facility in Jönköping. It was the first commercial installation of its kind in the world.

On 2019-03-07 the Swedish Transport Agency concluded that the T-pod is able to operate in accordance with Swedish traffic regulations. On 2019-03-11, the agency approved Einride’s application to expand the pilot to a public road, within an industrial area – between a warehouse and a terminal. The permit is valid until 2020-12-31.

Since Einride is primarily a software and operations company, they are seeking a partnership with a truck manufacturing company.

Falck said Einride would apply for more public route permits next year (2020). It was also planning to expand to the United States.

For further information, see: https://www.einride.tech/

Methane vs Electricity

The Solar (and battery) powered Sion EV, to be made by Sono Motors at the former Saab car plant at Trollhatten, Sweden. A more environmentally friendly choice than a methane powered vehicle. (Photo Sono Motors)

A study from the Munich-based IFO Institute for Economic Research, claims that battery electric cars are dirtier than those that are diesel powered. It proposes methane based, hydrogen vehicles. This study is significantly flawed.

For inforation about the report see: http://www.cesifo-group.de/ifoHome/presse/Pressemitteilungen/Pressemitteilungen-Archiv/2019/Q2/pm_20190417_sd08-Elektroautos.html

IFO is an acronym from Information and Forschung (research). As one of Germany’s largest economic think-tanks, it analyses economic policy and is widely known for its monthly IFO Business Climate Index for Germany. Its research output is significant: about a quarter of the articles published by German research institutes in international journals in economics in 2006 were from IFO researchers. Unfortunately, I have been unable to find more recent data to support this claim. According to the Frankfurter Allgemeine Zeitung ranking, it is also Germany’s most influential economics research institute.

Part of the problem is the recycling of disproved research. The claim promoted by ICE (internal combustion engine) automakers and the fossil fuel industry, is that electric vehicles are worse for the environment because they are powered by dirty electricity.

Studies looking at overall emissions based on electricity generation have debunked this and showed that electric cars are cleaner and becoming cleaner as renewable energy is becoming an increasingly more important part of the electric grid. Previous studies have shown that EVs are cleaner than diesel no matter which European grid electricity is used.

The new twist in the new report, is that EVs use significant amounts of energy in the mining and processing of lithium, cobalt, and manganese, which are critical raw materials for the production of EV batteries.

The major error here, is an assumption that EV batteries become hazardous waste after 150 000 km or ten years. This is untrue. First, 150 000 km is shorter than the warranty period for an EV battery, which is generally 160 000 km.

There are requirements in place throughout Europe for the recycling of batteries. Even in a depleted state, they are valuable because lithium is a scarce resourse. Lthium ion batteries are not considered hazardous waste, although lead acid batteries are, because of the lead.

Cobalt and manganese are also recycled.

The study also concludes that methane-powered gasoline engines or hydrogen motors could cut CO2 emissions by a third and possibly eliminate the need for diesel motors. Again the conclusions are not matched by the facts.

Most hydrogen is produced using steam-methane reforming, a production process in which high-temperature steam (700°C–1,000°C) is used to produce hydrogen from a methane source, such as natural gas. Methane reacts with steam under 3–25 bar pressure in the presence of a catalyst to produce hydrogen, carbon monoxide, and a relatively small amount of carbon dioxide. Steam reforming is endothermic, heat must be supplied to the process for the reaction to proceed.

This is followed by a water-gas shift reaction, where carbon monoxide and steam are reacted using a catalyst to produce carbon dioxide and more hydrogen. In a final process step called pressure-swing adsorption, carbon dioxide and other impurities are removed from the gas stream, leaving essentially pure hydrogen. Steam reforming can also be used to produce hydrogen from other fuels, such as ethanol or propane.

Steam-methane reforming reaction
CH4 + H2O (+ heat) → CO + 3H2

Water-gas shift reaction
CO + H2O → CO2 + H2 (+ small amount of heat)

The production of 1 ton of hydrogen produced 19 tons of CO2.

Hydrogen can be produced through other processes, including the partial oxidation of methane, and the electrolysis of water. Neither is in significant use.

While Germany currently uses more coal power than most of Europe, it is cleaning up more quickly than most. By 2030, 2/3 of its energy will be provided by renewables. This was not considered in the study.

Other mistakes arise from using the flawed NEDC driving cycle. This gives unrealistically optimistic numbers for diesel emissions, and unrealistically pessimistic numbers for electrical emissions.

One of the most significant mistakes involves the comparison of the full production and lifecycle emissions of an electric vehicle, including the emission from the electricity uses, versus those for a diesel vehicle. Unfortunately, the study does not account for all the energy used to produce the diesel and supply it to the cars.

The German auto industry has under-reporting diesel emissions, going so far as to install cheat devises on vehicles. These emissions have caused thousands of deaths, something that billions in fines cannot compensate.

Fossil fuel extraction requires large amounts of energy, machinery and in many cases has detrimental effects on the environment. A Canadian favourite, tar sands oil, requires strip-mining tar mixed with sand, this has to be liquified and cleaned for transportation. Then there are transportation costs including tanker grounding, railcar derailments and pipeline leaks, all resulting in massive environmental damage, including ground water contamination.

The Charm of a Nobe

A Nobe 100. Who needs more than three wheels? (Photo: Nobe)

The Nobe is 99% nostalgia, 1% practical motoring.

There are many different ways to judge technology. In looking at the Nobe’s electric design, it successfully plays on the strings of nostalgia. Of course it is a technologically advanced three-wheel drive battery electric vehicle. Designed and made in Tallinn, Estonia.

A nostalgic interior, with electric windows and air conditioning, but without airbags. (Photo: Nobe

In their mission statement, Nobe writes that they want to change people´s perceptions as well as their driving habits to finally make the electric car cool. They want to cross-wire rational analysis with emotions.

Their three-fold goal is to make the Nobe upgradeable, recyclable and sustainable, ending the disposable car. First, they want to make it easy for customers to upgrade their batteries, motor and electronics. Second, they want exterior panels to be swapable and recyclable. Third, they will never take/ send a Nobe to a scrapyard.

The Nobe features all-wheel drive. It is designed to grip the road and accelerate. Some versions are equipped with an optional M (muscle car) switch for increased power. The Nobe is equipped with dual batteries. The main battery puts power into each of the three powered wheels. A separate battery provides power for the supporting systems such as light, heat and entertainment.

When I first saw a Nobe, I found it an attractive vehicle. Since then, any thrill in the design has faded away. Of course the values expressed in the mission statement are admirable. Would I buy a Nobe? I don’t think so. Three wheels are only suitable for flatlands, Estonia or Michigan, not Norway or British Columbia.

When I look back at the 1960s, and at the height of my interest in cars, I was most interested in a white, second choice red, Triumph TR-4A. It was a road machine, suitable for the moutainous yet paved highways of British Columbia.

These days, a road machine has only limited appeal, if only because of its harsh yet functional suspension. In terms of sports cars, I am more attracted to a yellow or green Sunbeam Alpine that offered a softer ride, and more especially the 1964-5 Series IV, that featured a new rear styling, with more modest tailfins. It is pure nostalgia, a reminder that my first car was also made by Rootes Group, a Hillman Minx convertible.

I don’t have to buy a Nobe, a Triumph or an Alpine. In my dreams, I can drive any car I want, and it costs me nothing. Even the insurance, the fuel and any repairs are free. A bargain.

A Sunbeam Alpine IV at Horsted Keynes in 2012. Photo: Andrew Bone

The Nobe 100 has the following specifications:

Vehicle class: L5e – powered trike

Chassis: Steel tubing

Suspension: GAZ Gold Pro, custom

Body: Nextene, soundproof

Main battery: 21 kwh Li-On- or 25 kwh Li-On (GT)

Mobile battery: 4 kwh Li-On- or 5 kw Li-On (GT)

Range: 260 km combined: 210 on main 21 kwh battery, 50 km on additional, portable suitcase battery, or 310 km combined: 260 km main battery + 50 km on portable with 25 kwh battery.

Top Speed: 130 km/h

Engine: Three in-wheel electric motors, combined max power 76 kw

Drive: three-wheeled drive

Weight: 590 kg

Acceleration: 0–100 km/h 5,9 sec

Nobe has two doors, three seats and on the GT version, a removable Targa hardtop. The interior has Belize veneer details and brushed steel.

Hood ornament: the Foxy Lady.

The Foxy Lady. (Photo: Nobe)

Kaiyun Pickman

The Kaiyun Pickman is a Low Speed Electric Vehicle, aka Neigbourhood Electric Vehicle.

Wang Chao is an optimist. The founder of Kaiyun Motors hopes to transition owners of Ford F-150 pickups over to a Kaiyun Pickman. The Pickman is now NHTSA-approved for sale in USA and equivalently approved in Europe, where it is being sold in Germany and Italy.

While reports on the vehicle in January 2019, stated that it would cost $5 000 in USA and €5 000 in Europe, the American price had escalated to $9 000 by the middle of February, for a street-legal version; about $6 000 for a farm version.

While there must be caveats about the lack of safety features, the Pickman is undoubtedly an appropriate farm vehicle in rural environments, and a suitable vehicle for urban tradespeople. It is inappropriate for a daily commute involving any form of highway driving.

The Pickman is an example of a Low Speed Electric Vehicle, ususally referred to as a Neighborhood Electric Vehicle (USA) or Quadricycle (Europe). These are defined by limitations in terms of mass (weight), power and speed. All quadricycles must have a top speed of 45 km/h or less. In USA the limit is usually 25 mph or 40 km/h. In Europe, there are two categories: light quadricycles (L6e) and heavy quadricycles (L7e). A L6e EV must have a curb weight of 425 kg or less, and an electric motor producing 4 kW or less. A L7e EV must have a curb weight of 450 kg or less (passenger vehicles) or 600 kg or less (goods vehicles), The load capacity must be 200 kg or less (passenger vehicle) or 1000 kg or less (goods vehicle), with a maximum net engine power of 15 kW or less. .

The Pickman is powered by a 4 kW permanent magnet based electric motor with an asynchronization intelligent controller, mated to a 72V lead-acid battery pack providing 100 Ah or 7.2 kWh (26 MJ) of energy. Top speed is 45 km/h and range is 120 kilometers. There is some discussion about the load capacity. Some figures, in the table below are taken from a Chinese version, which appears to have a load capacity of 300 kg. The accuracy of the figures below is not guaranteed!

Specifications for base 2019 modelsPickmanF-150
Length/ mm3 2455 316
Width/ mm (excluding mirrors)1 3202 029
Height/ mm1 4601 918
Wheel Base/ mm2 0783 109
Ground clearance/ mm150 224
Load capacity (including driver/ passengers)/ kg500846
Curb weight/ kg6802 008

Note: Curb weight is the total weight of a vehicle with standard equipment, all necessary operating consumables such as motor oil, transmission oil, coolant, air conditioning refrigerant, and a full tank of fuel, while not loaded with either passengers or cargo. Note: In Europe, the mass of the batteries is excluded when determining vehicle curb weight.

Renault K-ZE

The interior of a Renault City K-ZE.
The modernist interior of a Renault 4.

A Renault K-ZE is being considered as an electric vehicle. One headline explained it all. “New Renault City K-ZE revealed in Shanghai as cheap electric SUV.” Yes, the operational word is cheap. This is not the only operative word in my automotive vocabulary. Safe, electric and autonomous are also important words. Tall is also important, as in 1 600 or higher vehicle height. However, tall is also important in terms of ground clearance in a snowy, poorly plowed landscape. Here, 180 mm (as in K-ZE) sound much more impressive than 120 mm (as in Zöe).

The K-ZE will not be available in Europe before 2021, at the earliest. Between now and then, there will be a lot of different EVs to consider, including the following already available: Kia e Niro, Kia Soul, Hyundai Kona, Renault Zöe, Citroen e Mehari, as well as the proposed Volkswagen I.D., Buzz and Buggy. If the range of a Citroen Berlingo could double beyond its current 170 km, it would be close to the top of the class. The same could also be said about the Renault Kangoo. The Nissan Evalia/ e NV200 gets slightly better range, but is much more expensive, eliminating it from the list of potential products.

Note: Some people may mistakenly believe that a Citröen 2CV represents my ideal car. This has never been the case. I much prefer utility vehicles such as the 2CV AZU Fourgonnette panel van, and its successors, the AK 400 Fourgonette, and the Acadiane. My interest stops there, avoiding the C15 entirely, and beginning again with the Berlingo.

When I looked at the interior of the Renault K-ZE, I focused my attention on the number of actuators (buttons) a driver would have to press, turn or otherwise manipulate. In contrast to many current cars, there seemed to be few. In many respects, European economy vehicles such as a Fiat 600 Multipla, Hillman Husky, Morris Minor 1000 Traveller, Renault 4 or even a slightly less practical but more popular Volkswagen Beetle of the 1960s have always represented a personal gold standard in terms of actuator manipulation.

While the K-ZE is based on the Renault Kwid, dimensions of the new vehicle have not been released, so Kwid dimensions have been used in the table below.

SpecificationK-ZE (Kwid)Zöe
Length/ mm3 6794 084
Width/ mm1 5791 730
Height/ mm1 5131 562
Ground Clearance Unladen/ mm180120
Wheel Base/ mm2 4222 588
Cargo Volume/ litres300338

Currently, the Renault Zöe costs NOK 215 000 (which is about the equivalent of USD 26 000/ CAD 36 000). This includes NOK 15 000 for the installation of a battery charger. The range of the Zöe is 240 km, and the expected range of the K-ZE is 250 km, both calculated using the NEDC-cycle. It is stated that the K-ZE will cost less than the Zöe.

Range is not a major consideration. The vehicle would have to have an ability to make a weekly run to pick up supplies in Straumen (13 km away = 26 km round trip), Steinkjer (35 km away = 70 km round trip) or make a day trip out to the coast. Yesterday’s daytrip to Ørlandet was 317 km. In the future, this might have to involve an overnighting, because of charging challenges. However, this fact makes vehicles with a longer range more attractive.

Normal charging at home (AC) was a challenge for Zoe, and could create problems for the K-ZE, since the vehicle could only be charged on a TN-net (400V 3-phase). This challenge was partly solved by providing a dedicated charging box and associated separator (which in essence “converts” 230V 1-phase to 3-phase).

Another aspect of this problem, has been solved by the Stavanger company Zaptec AS, that developed a small charging cable, with a built-in separator. With this, a Zoe can be charged without problems. The charging power is 10A with this cable.

NORMAL CHARGING: Charging with 2.3 kW / 10A takes 20 hours / 3.6 kW / 16A takes 12-13 hours / 11 kW / 16A (3-phase) takes 3 hours and 20 min / 22 kW / 32A (3-phase ) takes an hour and 40 minutes. QUICK CHARGE: The Zöe should be able to load 0-80 percent in less than an hour in the summer (with 43 kW AC found in a few places), but can take much longer in the winter. DC quick charging is not possible.

The exterior of a Renault K-ZE.

The Charm of a Bison

In a recent market survey undertaken by members of my immediate family, I discovered that not all aesthetic values are genetically inherited. Rather than being sad, this insight has given me the opportunity to explore new vistas. If people are not interested in revisiting sardine roles, sitting in a mini-van for days or weeks at a time, meditating on the spruce trees of Northern Sweden, I too can abandon the mini-van, and opt for something that reflects my new essence – the workshop activist.

So it is going to be, Au revoir, Berlingo! Hi, Bison! (or if I follow up what I wrote a few weeks ago, Hallo, StreetScooter Work!)

I have had relationships with pickups before. The very first vehicle I drove, in the very early 1960s, aged about twelve, was a Chevrolet Pickup belonging to Harry Raymer, in some fields in Okanagan Mission, near Kelowna, British Columbia, Canada. Later, in the early 1970s, I drove Ernie Jickles – whose eyesight was failing and was not allowed to drive – around in his wife’s Ford Courier pickup, so we could  photograph. The Courier was a rebadged Mazda B-1800. In the late 1980s, in Inderøy, I drove a Nissan pickup working on a lafted house project out in Malm.

A 1972 Ford Courier, a rebadged Mazda B-1800. The one I drove was light blue in colour, and belonged to the Jickles family, of New Westminster. (photo: Mr.choppers, 2014)

Forget the past. Today’s story is set in the future, about the Bison, a Dutch-Canadian electric pickup. The primary characteristic it attempts to portray is rugged durability. That’s almost how I describe myself, as do about 90% of the adult male population.

I’m not sure if it is a corporate, or a product motto, but LEADING THE CHARGE™ has both electrical, and military connotations. It also describes itself in terms of three other characteristics: power, precision, strength.

Characteristics of the Bison pickup, I think I understand:
1300 liters of exterior cargo space and 510 liters of lockable storage. Safest truck with carbon fibre reinforced steel space frame. Full electric AWD built for severe weather conditions. High-current power socket for all your tools. Advanced vehicle intelligence and connectivity. Zero emission driving and zero pollution. Dual-motor electric powertrain. Advanced telemetry.

Characteristics, I know nothing about:
Rugged off-road capabilities with 54% hill start and 21% hill climb. I guess this is important, because I live on a hill, but have no idea what it means beyond being able to start off on a hill. Yes, I am too lazy to google it.

Somewhere in between: Class-leading torsional stiffness for enhanced durability and handling. I know what stiffness is, but I thought one invested in a suspension system in trucks to softened up that stiffness.

I would like a person, or even a designer, to read the following paragraph, and tell me that it actually means something that I can use to impress friends: “The Bison speaks a bold design language, punctuated with angular cladding and wedge profiles. An evolutionary leap forward from traditional pickups, the Bison delivers a more modern and provocative approach. With short overhangs and tires pushed to the corners, the stance conveys stability and confidence allowing for aggressive approach and departure angles.”

Included for your visual enjoyment are photographs from the Bison website: http://www.havelaarcanada.com/bison/

Seeds: Trell 2

The Past

Back in 2014, I outlined an electric vehicle, Trell, that could be made by inmates at Verdal prison, where I worked teaching technology and associated subjects. Trell was mainly a pedagogical vehicle, but if actually built, could be used to solve a number of transportation challenges at the prison. A blog post on the original Trell will be published in the future.

The Present

Now it is 2018, and I see a need for an battery electric autonomous truck emerging.

Let’s begin by qualifying that statement, by examining it word by word.

Battery: While a battery may be needed for last kilometer situations, there is no reason why electric vehicles have to store significant quantities of energy onboard. It only adds to vehicle weight which increases capital and operating costs. The term dynamic wireless charging is often used.

Electric: This vehicle will be electric powered. Electric motors are preferred because they generate maximum torque even while stopped.

Autonomous: All contact with the vehicle will be through electronic devices sending and receiving encrypted messages. This vehicle will not require a driver. In fact, there is no space on board for a driver. Using the Society of Automotive Engineers’ levels for automated driving systems this vehicle will have to be at either level 4 or level 5. At level 4 vehicles are “designed to perform all safety-critical driving functions and monitor roadway conditions for an entire trip.” It is limited to the operational design domain (ODD) of the vehicle, which is an incomplete set of driving situations. At level 5 this ODD restriction is removed and the vehicle’s performance to expected to equal that of a human driver, in every driving situation including extreme environments, like snow covered roads.

At this prototype stage there is no need for a functioning autonomous vehicle. Many prototypes lack drive trains entirely. A compromise will be fitting the vehicle with remote control equipment, so that the entire movement of the vehicle is under the control of a living human being.

Truck: This vehicle is to be used for the shipment of goods. Minimum cargo capacity is arbitrarily set to LxWxH 2 500 mm x 1 250 mm x 1 000 mm. No people will be transported under any circumstances.

Conceptual sketch of a Trell 2 Battery Electric Autonomous Truck

The Trell 2 is inspired by the Subaru Sambar more than any other vehicle. The vehicle is designed to transport bulky materials. Target materials are plywood and other construction material sheets. This would require a vehicle design width of 1 600 mm, which includes 50 mm on each side for side doors that open upwards into the roof. The doors would be 2 500 mm long and 1 000 mm high. The vehicle would have a length of 3 500 mm of which 2 500 mm would dedicated to cargo. This is fitted with one door along each side. At both ends of the vehicle 500 mm is used to make an aerodynamic front and rear end. Most of this volume would also be available for transporting goods.

The Future

This is far too big a project for me to work on alone. Or more correctly, I have so many other projects that I am interested in, I can’t devote all of my energies to a time thief like this. However, I see it as an opportunity to work with several others at the new Hastighet = Velocity workshop in Straumen.

The first recruitment session will be at the annual meeting of the local Friends of the Earth group, at the end of February. Once vehicle specifications have been agreed upon, I imagine a prototype could be built using components from scrapped vehicles. EVs for drive train components, smaller pickups (such as a Subaru Sambar) could provide many useful parts.