Vehicle Devices

The Fisker Ocean will be contract manufactured by the Canadian owned, Austrian located, Magna Steyr facility in Graz, Austria. Photo: Fisker, Inc.

While many Americans will be focused on their presidential election taking place today (2020-11-03), this observer is awaiting the result of the Massachusetts Right to Repair Initiative (2020), a referendum appearing on today’s Massachusetts general election ballot. This could update the state’s right to repair laws to include telematic electronic vehicle data. This was specifically excluded on the 2012 referendum that passed with 86% of the vote.

It comes as no surprise that Elon Musk is opposed to the Massachusetts Right to Repair Initiative (2020), and is actively encouraging people to vote no. Right to repair legislation is generally supported by consumers, independent repair/ after-market companies and associations. It is generally opposed by original equipment manufacturers (OEMs), such as Ford or GM, and dealerships.

The Clean Air Act of 1963, is a United States federal law that with the purpose of controlling air pollution. It has been amended several times since then. The 1990 amendments required all vehicles built after 1994 to include on-board computer systems to monitor vehicle emissions. The bill also required automakers to provide independent repairers the same emissions service information as provided to franchised new car dealers. California further passed legislation requiring that all emissions related service information and tools be made available to independent shops. Unlike the Clean Air Act, the California bill also required the car companies to maintain web sites which contained all of their service information and which was accessible on a subscription basis to repair shops and car owners.

Today, microprocessors control operation-critical vehicle systems: brakes/ ignition (on internal combustion engine (ICE) vehicles) / air bags/ steering/ and more. Repairing/ servicing requires computer diagnostic tools. At the same time, OEMs have taken on gatekeeper roles to control information and parts necessary for service/ repairs. Control, in the above sentence, is particularly aimed at restricting access.

Most ICE vehicles use a controller area network (CAN bus) to manage microcontrollers, smart sensors and other devices to communicate with each other without a host computer. Each of these components is referred to as a node, with a hierarchical structure in relation to each other. No two nodes are equal, one always ranks above or below the other. The network features a message-based protocol. When two or more nodes transmit simultaneously, it is always the highest ranking node that is allowed to continue.

The electronic control unit (ECU) is typically based on about 70 nodes, each featuring, say, a 32-bit, 40 MHz microprocessor with about 1 MB of memory. This is orders of magnitude less powerful than those used in laptop or desktop computers.

Each node has to be able to handle a large set of processing tasks. These include: Analog-to-digital converters (ADC) – where a physical property usually measured in volts is converted into a digital number; Digital-to-analog converters (DAC) – provide an analog voltage output to drive some component, with a digital number telling the system what analog voltage to supply; signal conditioners make adjustments to input or output data so that it aligns more correctly with real-world needs; communication standards are implemented capable of sending appropriate signals to other nodes. The CAN-bus communication standard allows for speeds of up to 500 kilobits per second (Kbps) using two wires.

The CAN-bus, and similar devices, simplify vehicle wiring through the use of smart sensors and multiplexing. In ancient times (prior to about 1990) a wire ran from each switch to the device it powered. The circuit was completed by grounding one terminal of the battery to the chassis.

Smart sensors are integrated components, that include not only the sensor, but an ADC and a microprocessor. This allows it to read a voltage, make compensations for temperature, pressure or other factors using compensation curves or calculations, and then send digital output signals onto the CAN-bus.

With multiplexing a microprocessor monitors sensors in one area of the vehicle, such as a door. When that a specific window button is pressed “downward”, the microprocessor will activate a relay that will, in turn, provide power to the window motor so it moves downward.

Among the parts carmakers buy assembled from external suppliers are instrument clusters. These are designed by the supplier to the vehicle maker’s specifications. This is advantageous for both for the maker and the supplier. However, it also takes power away from the OEMs, and gives it to suppliers, such as Bosch or Continental.

Some of the nodes include: Battery Management System (BMS); Brake Control Module (BCM) which may also incorporate an Anti-locking an Braking System (ABS) and Electronic Stability Control (ESC); Door control unit (DCU); Electric Power Steering Control Unit (PSCU) or a Motor-driven Power Steering Unit (MPSU); Human-machine interface (HMI); Powertrain control module (PCM): which may combine an Engine Control Unit (ECU) and a transmission control unit (TCU); Seat Control Unit; Speed control unit (SCU);Telematic control unit (TCU).

Confusingly, ECU is also used as an abbreviation for the Engine Control Unit, which is one specific node. Here, and in many other circumstances to avoid confusion, it will be referred to as an ECM = Engine Control Module. It uses closed-loop control. Depending on the intended usage of the vehicle, the ECM will optimize specific goals: maximum torque, maximum fuel efficiency, minimum emissions, etc.

The CAN-bus allows module to communicate faults (errors) to a central module, where they are stored, then sent onwards to an off-board diagnostic tool, when it is connected. This alerts service personnel to system errors.

With electrification already a reality, and autonomous driving becoming one soon, the CAN-bus methodology will be unable the flow of data. Tesla uses a dual (read: duplicate/ redundant) artificial intelligence (AI) based, Samsung produced microprocessor system, running at 2 GHZ, to control vehicles. Compared to the CAN system, these are extremely powerful,

Volkswagen’s ID3 is going the same route, where it is using high-performance computers (HPC) supplied by Continental for control purposes.

Some vehicle designers do not have the capability to set their designs out in life. A notable example is Fisker. Danish-American Henrik Fisker (1963 – ) has made some exciting vehicle designs, but not all of the businesses he has started have survived. The latest manifestation is Fisker Inc., which was started in 2016. It has presented a SUV EV, Ocean, and a pickup proposal, Alaskan. With the Ocean’s design finalized, it is outsourcing vehicle production of its Ocean to Magna Steyr, a Canadian-Austrian contract vehicle manufacturer. For Fisker, this will reduce manufacturing complexities and costs, in contrast to building and operating its own factory. Magna’s electric vehicle platform, Partial payment for this will be in the form of (up to) 6% stake of Fisker Inc.’s equity, currently valued at $3 billion.

Returning to the Massachusetts Right to Repair Initiative (2020), a yes vote can have dramatic consequences for the computing equipment put on vehicles (ICE as well as EVs) in the future. Starting with the model year 2022, all vehicles with telematic systems, sold in Massachusetts (but more likely throughout the United States, if not the world) will have to be equipped with a standardized open access data platform.

On 2020-10-15, Foxconn, the Taiwanese multinational electronics contract manufacturer, responsible for production of an estimated 40% of all consumer electronics sold worldwide, announced its MIH open platform for electric vehicles. If Tesla is the iPhone of electric vehicles, Foxconn wants to be its Android. Foxconn has been involved in automotive manufacturing since 2007.

Currently, according to Foxconn, the battery pack accounts for 30 to 35% of the total production cost of an EV; powertrain = 20 to 25%; Embedded Electronic Architecture (EEA) = 15 to 20%; body = 13 to 15%; otheto develop and establish an open industry standard for automotive electrical-electronic (E/E) architecturer, including wheels & tires = 10 to 12%.

The MIH platform would be prepared for 5G and 6G, comply with AUTomotive Open System ARchitecture (AUTOSAR) and ISO 26262, and be ready for OTA (over-the-air) updates and V2X (vehicle-to-anything) communication.

AUTOSAR has been in operation since 2003 Its founding members include: Bavarian Motor Works (BMW), Robert Bosch GmbH, Continental AG, Daimler AG, Siemens VDO (until its acquisition by Continental in 2008), and Volkswagen. Later members include Ford Motor Company, Groupe PSA, Toyota Motor Corporation (all 2003), General Motors (2004). Thus, it represents a very large proporttion of the automotive industry. Its objective is to create/ establish an open and standardized software architecture for automotive electronic control units (ECUs). Other goals include “the scalability to different vehicle and platform variants, transferability of software, the consideration of availability and safety requirements, a collaboration between various partners, sustainable use of natural resources, and maintainability during the whole product lifecycle.”

ISO 26262, Road vehicles – Functional safety, was defined in 2011, and revised in 2018.

The MIH platform can accommodate wheelbases from 2 750 to 3 100 mm, with tracks from 1 590 to 1 700 mm, ground clearance from 126 to 211 mm. Three battery packs will be available. Vehicles can be rear wheel drive (RWD), front wheel drive (FWD) or all wheel drive (AWD). Motors on the front axle can be: 95 kW, 150 kW or 200 kW. Motors at the rear can be: 150 kW, 200 kW, 240 kW, and 340 kW. This allows a range of vehicles from a FWD with 95 kW to an AWD with 540 kW.

Part of the MIH strategy is to use mega castings. Foxconn cites one example, where they reduced 7 front suspension body panels to a single cast part and 27 rear longitudinal rail components to yet another single cast part, using a 4.2 Gg = 4 200 Mg (commonly called a ton) die-cast machine.

This post will end with a rhetorical question: What is a vehicle device? There may be many answers, but there are three I would like readers to consider. The first, is that there are subcomponents on a vehicle that could be regarded as devices. Second, the vehicle itself is also a device. Indeed, unlike a so-called mobile phone, which is a hand-held device, a vehicle is a true mobile device. Other potential members of this category include robot lawnmowers, electric airplanes and exoskeletons that are sometimes used by people with mobility issues. The third, is that the production platform is the device.

RBW Electric Roadster: A Tidbit

A RBW Electric Roadster, based on a MGB body shell from the 1960s, but with a modern electric drivetrain, Photo: RBW Electric Classic Cars

When enthusiasts comment on sports cars they commonly show their prejudices in their first sentence. This enthusiast is no exception. I cannot hide my delight that the age of the ICE (internal combustion engine) sports car is ending. Long live the electric sports car!

What seems to be happening is that people are taking their favourite 1960s vehicle bodies and fitting them with an electric power-train. Sometimes these bodies are real, with steel parts that have had sixty years to rust. At other times these bodies are constructed in fibreglass, original if available or a replica if not. Presumably there are also carbon-fibre replicas. Many of the drivetrains come from Teslas, or other electric vehicles, that have been totally damaged in an incident.

RBW Electric Classic Cars takes a different approach. Recently, they have produced a prototype of a sports car based on a MGB.

The body shell is new, produced under licence to the original specifications, by British Motor Heritage, of Witney, in the Cotswold. It is powered with a patented drivetrain system, incorporating three years of development by RBW, Continental Engineering Services (CES), and Zytek Automotive, a 100% owned subsidiary of Continental Engineering Services. This drivetrain is derived from Formula E technology. All three companies are based in Lichfield. While the electric motor is placed at the rear of the car, a lithium-ion battery pack is located in the abandoned engine room, giving a balanced weight distribution.

The front and rear suspension consist of independent coilovers. The brakes, feature discs and callipers, but also integrate regenerative braking technology.

While the interior features a 7″ dashboard display with wi-fi-enabled navigation, the system seems underwhelming, at least to a computer scientist.

Top Speed80 mph = ca < 130 km/h
0-60 mph = ca 0-100 km/h9 s
Range160 miles = ca 260 km
BatteriesSix Hyperdrive Lithium-ion battery packs
Power Output70 kW
DC Charging3.0 kW
Recharge Hours8 hours
Electrical and related characteristics of the RBW Electric Roadster.

Thirty examples of the RBW Electric Roadster will be produced, starting in early 2021. Prices will start from £90 000, plus taxes, with an initial £5 000 deposit.

Izera

Izera Z100 Crossover SUV prototype. Photo: ElectroMobility Poland.

Izera is an electric vehicle brand, named after the Izera Mountains in south-western Poland. It is owned by ElectroMobility Poland, a state-controlled joint venture established in October 2016 by four Polish power companies: PGE Polska Grupa Energetyczna SA, Energa SA, Enea SA and Tauron Polska Energia SA. Each has a 25% share. It even has a marketing slogan “A million reasons to keep on driving.” As if this isn’t enough, the company has been able to design and make two prototypes, with the intention of launching an electric vehicle production facility: a hatchback (T100) and crossover/ SUV (Z100), both suitable for families.

Poland is the largest European state that has no vehicle brand, despite the automotive industry being the second largest in the country, at 7% of GDP, over 200 000 jobs in production and 270 000 other jobs.

The Izera EVs were designed based on a detailed analysis of Polish consumer expectations and car clinic studies. Production models are not meant to be luxury products but affordable vehicles for Poles. ElectroMobility Poland wants to introduce an installment payments system so that the total cost of ownership of the car is less than comparable internal cumbustion engine (ICE) vehicles.

Much of the prototype design originates with Torino Design. ElectroMobility Poland intends to start production around 2023, which means that there is ample time to refine the prototypes into production vehicles. ElectroMobility Poland’s CEO Piotr Zaremba says the production models “will retain the characters of the presented vehicles”.

Production vehicle characteristics announced: 0 to 100 km/h in under 8 seconds; range about 400 km; two battery pack sizes that are suitable for home chargers as well as fast-charging stations; a dedicated smartphone app; all-LED lighting; high-resolution LCD touchscreens; Electronic Stability Control; Forward Collision Warning; Blind Spot Detection; Traffic Sign Recognition; and probably much more. Dimensions of the prototypes and the proposed production vehicles were not revealed.

ElectroMobility Poland says it is negotiating the purchase of a vehicle production platform from Germany’s EDAG Engineering GmbH, based in Wiesbaden. It is also active in the fields of product development, production plant development, plant engineering, limited series manufacturing, modules and optimization. After a production platform is in place, the prototypes can be industrialized, and a suitable production facility constructed.

A short YouTube video shows the current state of the design prototypes, released to the public.

Wuling Hongguang Mini EV

The Wuling Hongguang Mini EV (Photo: Wuling)

The Wuling Hongguang Mini EV is being made by the SAIC-GM-Wuling joint-venture, with each company having 50.1, 44 and 5.9% of the shares, respectively. The company is located in Liuzhou prefecture, in south-eastern China. It is known for its microvans (bread box cars), especially the ICE-powered (internal combustion engine) Wuling Sunshine. As China has become richer, microvans have become less popular, encouraging Wuling to focus on other segments.

After first being announced in 2020-03, recent attention has focused on deliveries for the Mini EV. It was launched 2020-07-24, with 15 000 vehicles were sold in the first 20 days. Now, there are more than 50 000 orders. According to Wuling partner, General Motors, the vehicle is inspired by the Japanese Kei car, their smallest highway-legal passenger car segment.

In the future, about 100 Experience stores will be opened, throughout China, to market the car, particularly in urban centres. According to Gasgoo, this is being done to attract fashion conscious younger owners.

The Mini EV dimensions are: length 2917 mm on a 1 940 mm wheelbase, width 1 493 mm and height 1 621 mm. It can provide seating for four adults.

The range is 120 km with a 9.2 kWh battery or 170 km with a 13.8 kWh battery. Charging is via a 240 V outlet. The motor has 13 kW of power, and 85 Nm of torque. This provides a top speed of 100 km/h. It comes equipped with an intelligent battery management system (BMS), as well as low-temperature pre-heating technology and battery insulation. It has an IP68 waterproof and dustproof rating and, according to Wuling, been put through 16 rigorous safety tests. The battery’s functions can be remotely monitored via a smartphone app.

The price of the vehicle in China ranges from 28 800 yuan (ca. €3 550) to 38 800 yuan (ca. €4 750).

More than half (57%) of the Wuling Hongguang Mini EV’s body consists of high-strength steel. It also comes with the anti-lock braking system (ABS) with electronic brake-force distribution (EBD), the tire pressure monitoring system (TPMS) and reversing radar. The back seats are equipped with two ISOFIX child safety seat restraint interfaces. When the rear seats are not in use, there is 741 litres of storage space. In addition, there are 12 storage compartments in the cabin, including a smartphone tray.

While the Wuling Hongguang Mini EV is currently only available in China, some characteristics hint that it could be built to satisfy European microcar (L7e), or city car (A-segment) specifications. The 13 kW engine power hits at it being a microcar, can only have a maximum of 15 kW. However, the contra-indication to this is the seating for four adults. This would mean that the payload would exceed the maximum 200 kg allowed. If the rear seats were removed, this would put the maximum payload below 200 kg. As a city car, the vehicle would have to be equipped with airbags, and other safety equipment, raising the price.

Wuling Hongguang Mini EV interior, with the rear seats folded (cutaway). Photo: Wuling.

Given a choice between a Zetta CM1 and a Wuling Hongguang Mini EV, there is no doubt (at least in my mind) that the Zetta is a superior vehicle, and probably gives better value.

Zetta CM1: A tidbit

The Zetta City Module 1 (CM1) is the first Russian built EV to enter production, according to Automotive Logistics. Unfortunately, detailed information is difficult to access. Even the English version of the Zetta company site fails to mention the CM1, devoting its content to technological issues of its drive train, especially the in-wheel = in-hub induction motors. However, some information is available from Russian Auto News.

The modular approach used by Zetta means that different modules can be built for different purposes, goods as well as person transport. Some of these will be mass produced focussing on common needs. This is the case of the CM1. Others may have more limited appeal, such as outfitting a vehicle to accommodate a person with disabilities, who has very specific and individual needs. Yet flexibility is not the only attribute. The Zetta is also technologically efficient, economic and – to repeat that so-often misused term – ecological.

The in-hub drive train is exceedingly important for Zetta. Zetta CEO Denis Schurovsky says “Summer and winter validation has shown us that induction motors can endure road dynamic stresses. They are resistant to chemicals, dust, water, etc. All wheels are connected to a single management system that simulates electric ABS and ESP with high recuperation capability.” Each in-hub motor is rated at 20 kW, for a total of 80 kW, a respectable power for such a small vehicle.

The CM1 has a length of 3 030 mm on a 2 000 mm wheelbase, and with a width of 1 270 mm and height of 1 600 mm. It is configured as a four-seater. Inside EVs makes a point that the car is just 340 mm longer than a Smart Fortwo, and that the seating must only be for children in the back. This misses the point entirely that an EV with in-hub electric motors will use space much more efficiently than an ICE (internal combustion engine) designed vehicle. Top speed is 120km/h and battery capacity ranges between 10kWh and 32kWh, for a range of between 200 and 560 km. Depending on the battery pack selected, the weight of the vehicle should be between 500 and 700 kg.

About 90% of the vehicle content is Russian. Much of the remainder is in the batteries, imported from China. The vehicle has been in development since 2017.

At a price of €5 300, Zetta CM1 claims to be the cheapest EV in the world. The vehicle has been developed by Russian Engineering and Manufacturing Company (REMC) in Toliatti/ Togliatti, the Russian city named after Italian Communist Party Leader Palmiro Togliatti (1893 – 1964). Estimated production is 15 000 vehicles a year.

And so to the question many readers will be asking, would I buy one? I would like to answer yes, especially after a theoretical regret at prioritizing a Japanese Subaru Justy four wheel drive in 1986, instead of the cheaper Russian Lada station wagon (VAZ-2104) or its similarly priced, but considerably larger and more powerful 4×4 off-roader, the Lada Niva (VAZ-2121). Andy Thompson in Cars of the Soviet Union (2008), states that Lada “gained a reputation as a maker of solid, unpretentious and reliable cars for motorists who wanted to drive on a budget.” It is my hope that the Zetta will offer purchasers a similar, positive experience. Unfortunately, the answer will probably be no, and I will be unable to engage in the one-upmanship that comes from owning a €5 300 EV, capable of doing the same basic driving tasks as a €53 000 (or more) Rivian R1S or Tesla Model Y.

Oatly & Einride: A tidbit

Oatly has devised a process to provide a vegan alternative to milk. Now it is concentrating on making that process more sustainable, but reducing CO2 emissions. Artwork: Oatly.

My personal transition from omnivore to vegan/ vegetarian is proceeding almost as slowly as my transition away from driving a diesel to an electric vehicle. One positive change, is that we purchase our eggs and milk (and some honey as well as produce) from neighbouring farms, rather than grocery stores.

I asked my personal shopper to add some Oatly products onto her shopping list. Instead, she invited me to help her shop at the local Co-operative in Straumen. Thus, I was able to purchase one litre (about a quart) of havredrikk kalsium (oatmilk calcium). Unfortunately, I was unable to find the other products I wanted to try: havregurt vanilje (oatgurt vanilla); havregurt turkisk (oatgurt Turkish) and iMat fraiche (Oat creme fraiche).

Oatly is a Swedish vegan food brand, producing dairy alternatives from oats. Based on research at Lund University. The company’s enzyme technology turns oats into a nutritional liquid food suitable for the human digestive system. The company operates in southern Sweden with its headquarters in Malmö, with a production & development centre in Landskrona. The brand is available in more than 20 Asian and European countries, Australia, Canada and USA.

Oatly claims to be a sustainable food manufacturer. Artwork: Oatly

Oatly also tries to be sustainable, by reducing its contributions to global warming. They also produce a sustainability report. It shows that almost half of Oatly’s contribution to greenhouse gasses comes from the cultivation of ingredients, a quarter from transport, 15% from packaging and 6% from production (p. 26).

Oatly is not perfect. For example, there has been some controversy about it selling oat residue to a pig farm. On the other hand, it has benefited from two publicity attacks. First, Arla, the Swedish dairy company, attempted to discourage people from buying vegan alternatives to cow’s milk (mjölk in Swedish) using a fake brand Pjölk. Oatly responded by trademarking several fictitious brands Pjölk, Brölk, Sölk and Trölk and began using them on their packaging. Second, the Swedish dairy lobby LRF Mjölk, won a lawsuit against Oatly for using the phrase “Milk, but made for humans” for £ (sic) 100 000. When Oatly published the lawsuit text, it lead to a 45% increase in Oatly’s Swedish sales. Once again, this seems to suggest that there is no such thing as bad publicity.

On 2020-05-14, Oatly and Einride announced that Oatly will use four 42-tonne vehicles starting 2020-10 to transport goods from production sites in southern Sweden, using Einride’s Freight Mobility Platform. This is estimated to lower its climate footprint (on the affected routes) by 87% compared to diesel trucks: 107.5 tonnes of carbon dioxide per year per truck, about 430 tonnes per year in total, or 2 100 tonnes throughout the five year duration of the contract.

Part of the solution involves optimizing electric trucks operations using computer-controlled logistics with Einride’s Freight Mobility Platform software. Accurate transport planning allows 24 tonnes of goods to be transported an average of 120 kilometers without charging. It involves optimizing and coordinating drivers, vehicles, routes as well as charging. On a typical shift, three drivers will drive four different trucks. This means that one truck is always charging, which places less strain on batteries, and making the operation more durable and economical.

Oakly’s 42-tonne Einride trucks will feature a DAF glider, with Emoss drivetrain and Einride software. Photo: Einride

This initial iteration involves a DAF glider (a vehicle without a drivetrain/ prime mover/ power source, fitted with a Emoss motor. Future iterations may involve a Einride Pod, previously referred to as a T-pod.

TOGG

TOGG’s battery electric SUV will be available from 2022. Photo: TOGG

Tog is the Norwegian word for train. TOGG is not a train, but a family of five EV models to be produced in Turkey by a consortium. Two prototypes were unveiled 2019-12-27, consisting of a red SUV and a grey sedan. The Turkish government had guaranteed to buy 30 000 of the vehicles by 2035, or about 2 000 vehicles a year over a 15 year period. Annual production volume is estimated to be 175 000 units a year. An investment of about $3.7 billion will be required between now and 2033.

Turkish plans for a domestically made vehicle were first announced in 2017-11, by a consortium that was formally established in 2018. Shares in consortium member stocks fell after the announcement, in part because of their lack of experience in automotive production. Members of the consortium consist of: Anadolu Holding; BMC Group, a Turkey-Qatar partnership; Kok Group; Turkcell, a mobile phone operator; and, Zorlu Holding, parent of TV maker Vestel.

Turkey’s Automobile Initiative Group (TOGG) project was launched in 2019-10. In addition to assorted forms of state support, production facilities are going to be constructed in Bursa in northwest Turkey. Bursa is already Turkey’s automotive hub. Ford, Fiat Chrysler, Hyundai, Renault and Toyota make vehicles in Turkey, that are exported to Europe.

This lack of automotive competence has now been rectified. TOGG’s CEO is Gurcan Karakas, former Bosch executive. Its COO is Sergio Rocha, former General Motors Korea chief executive. Production will begin in 2022 with compact SUVs.

Turkish president Tayyip Erdogan, regards this project as a demonstration of Turkey’s growing economic power. Thus, TOGG has been launched as a potential global brand, starting with the European market. Erdogan said Turkey’s EV charging infrastructure would be ready nationally by 2022.

Further details will be published as they become available.

The Charm of a Uniti

The production model Uniti One, available in three gray colours. (Photo: Uniti)

Uniti began life as an open innovation project at Lund University in 2015, then emerged as a Swedish electric vehicle startup in 2016. It is developing an advanced city car. What first attracted my attention, was the replacement of the steering wheel with a joy-stick. Most of the mechanical system appeared equally innovative, and claimed to be sustainable, whatever that means.

Prototype development was funded through an equity-crowdfunding campaign on the Swedish platform FundedByMe, with 570 investors contributing €1,227,990.

The design mandate of the Uniti One seems to be in a state of flux. At one time, it was a relatively unsafe L7e quadricycle. Now, thankfully, it is being lauched as a M1 vehicle requiring crash testing, and more safety equipment. Other details, such as seating arrangements have also been subject to change. It was a side by side 2 seater, before it became one with one person sitting behind another. Now it is launching as a 3 seater, with a driver in the middle in front, with space for two passengers behind. Trunk space is adequate to hold a packed lunch and a charging cable, at 155 litres.

With a 50 kW electric motor and 62 Nm of torque, and a mass under 600 kg, the Uniti One can reach 100 km/h in less than 10 seconds. It has a computer controlled top speed of 120 km/h.

The Uniti One comes with an electrochromatic panoramic roof that darkens automatically to keep the car cool when parked in direct sunlight. Its virtual sun visor darkens the top of the windshield when the sun is in the drivers eyes.

An Android operating system controls the infotainment system and most of the standard features of the car. Voice commands can be issued. Its systems are regularly updated over the air.

A high strength safety cage surrounds the driver and passengers keeps interior deformation to a minimum, in the event of a collision. Other standard safety equipment include driver’s airbag, anti-lock braking, electronic stability control and a tire pressure monitoring system. The Intel MobilEye 6 collision avoidance system provides forward collision and lane departure warnings, speed limit indicator, and warning for potential collisions with pedestrians or bicycles and their riders, in real time.

In its current state, what appeals most about the Uniti One is that much of the equipment is optional, which means that people declining options can end up with a lower cost vehicle. Currently, the base model costs about €18 000, before subsidies. The only options I would insist on would be the Intel Mobileye 6 collision avoidance system (€ 700), winter tires (€ 400) and possibly air conditioning (€ 300). This is not a highway vehicle, so a 150 km range with a standard 12 kWh battery and a slow 3.2 kW charger seem adequate. It seems wasteful to spend €2 800 each on a 24 kWh battery and a 22 kW charger.

In terms of a computer vehicle transporting one person and a lunch bag in an urban environment, this is probably a good choice except, in urban environments there is public transport, which would be a better choice.

That said, my greatest disappointment with the production vehicle is its steering wheel, with no joy-stick in sight.

Uniti One interior, available in gray. (Photo: Uniti)

The Charm of an Einride T-pod

The world premiere of an Einride T-pod, a level 4 autonomous, electric vehicle with a mass of 26 tons, on a public road in Jonskjöping, Sweden. 2019-05-15. Photo: Einride.

Robert Falck, a former Volvo executive, is founder and CEO of Einride. Together with, Jochen Thewes, CEO of DB Schenker, a major logistics company, and Mats Grundius, CEO of DB Schenker Cluster Sweden, Denmark, Iceland, he hosted a world premiere on Wednesday, 2019-05-15.

Einride and DB Schenker entered into a commercial agreement in 2018-04 that includes a pilot in Jönköping with an option for additional pilots internationally.

Einride’s signature product is a T-Pod truck. With a Gross Vehicle Weight of 26 tons, its most notable characteristics are its electric drive train, and autonomous driving capabilities. These two features reduce road freight operating costs by about 60 percent compared to a diesel truck with driver.

However, Einride wants more, a safe, efficient and sustainable road freight transport solution, that can reduce CO2 emissions by up to 90 percent

The T-Pod is level 4 autonomous, the second highest category. It uses a Nvidia Drive platform to process visual data in real time. An operator, sitting anywhere in the world but most probably in Jonsköping, can supervise and control up to 10 vehicles simultaneously. The T-Pod has permits from the Swedish Transport Agency to make short trips – between a warehouse and a terminal – on a public road in an industrial area in Jonkoping, located in central Sweden, at speeds of up to 5 km/h.

In 2018-11, Einride and DB Schenker initiated the first installation of an autonomous, all-electric truck or “T-pod” at a closed DB Schenker facility in Jönköping. It was the first commercial installation of its kind in the world.

On 2019-03-07 the Swedish Transport Agency concluded that the T-pod is able to operate in accordance with Swedish traffic regulations. On 2019-03-11, the agency approved Einride’s application to expand the pilot to a public road, within an industrial area – between a warehouse and a terminal. The permit is valid until 2020-12-31.

Since Einride is primarily a software and operations company, they are seeking a partnership with a truck manufacturing company.

Falck said Einride would apply for more public route permits next year (2020). It was also planning to expand to the United States.

For further information, see: https://www.einride.tech/

Methane vs Electricity

The Solar (and battery) powered Sion EV, to be made by Sono Motors at the former Saab car plant at Trollhatten, Sweden. A more environmentally friendly choice than a methane powered vehicle. (Photo Sono Motors)

A study from the Munich-based IFO Institute for Economic Research, claims that battery electric cars are dirtier than those that are diesel powered. It proposes methane based, hydrogen vehicles. This study is significantly flawed.

For inforation about the report see: http://www.cesifo-group.de/ifoHome/presse/Pressemitteilungen/Pressemitteilungen-Archiv/2019/Q2/pm_20190417_sd08-Elektroautos.html

IFO is an acronym from Information and Forschung (research). As one of Germany’s largest economic think-tanks, it analyses economic policy and is widely known for its monthly IFO Business Climate Index for Germany. Its research output is significant: about a quarter of the articles published by German research institutes in international journals in economics in 2006 were from IFO researchers. Unfortunately, I have been unable to find more recent data to support this claim. According to the Frankfurter Allgemeine Zeitung ranking, it is also Germany’s most influential economics research institute.

Part of the problem is the recycling of disproved research. The claim promoted by ICE (internal combustion engine) automakers and the fossil fuel industry, is that electric vehicles are worse for the environment because they are powered by dirty electricity.

Studies looking at overall emissions based on electricity generation have debunked this and showed that electric cars are cleaner and becoming cleaner as renewable energy is becoming an increasingly more important part of the electric grid. Previous studies have shown that EVs are cleaner than diesel no matter which European grid electricity is used.

The new twist in the new report, is that EVs use significant amounts of energy in the mining and processing of lithium, cobalt, and manganese, which are critical raw materials for the production of EV batteries.

The major error here, is an assumption that EV batteries become hazardous waste after 150 000 km or ten years. This is untrue. First, 150 000 km is shorter than the warranty period for an EV battery, which is generally 160 000 km.

There are requirements in place throughout Europe for the recycling of batteries. Even in a depleted state, they are valuable because lithium is a scarce resourse. Lthium ion batteries are not considered hazardous waste, although lead acid batteries are, because of the lead.

Cobalt and manganese are also recycled.

The study also concludes that methane-powered gasoline engines or hydrogen motors could cut CO2 emissions by a third and possibly eliminate the need for diesel motors. Again the conclusions are not matched by the facts.

Most hydrogen is produced using steam-methane reforming, a production process in which high-temperature steam (700°C–1,000°C) is used to produce hydrogen from a methane source, such as natural gas. Methane reacts with steam under 3–25 bar pressure in the presence of a catalyst to produce hydrogen, carbon monoxide, and a relatively small amount of carbon dioxide. Steam reforming is endothermic, heat must be supplied to the process for the reaction to proceed.

This is followed by a water-gas shift reaction, where carbon monoxide and steam are reacted using a catalyst to produce carbon dioxide and more hydrogen. In a final process step called pressure-swing adsorption, carbon dioxide and other impurities are removed from the gas stream, leaving essentially pure hydrogen. Steam reforming can also be used to produce hydrogen from other fuels, such as ethanol or propane.

Steam-methane reforming reaction
CH4 + H2O (+ heat) → CO + 3H2

Water-gas shift reaction
CO + H2O → CO2 + H2 (+ small amount of heat)

The production of 1 ton of hydrogen produced 19 tons of CO2.

Hydrogen can be produced through other processes, including the partial oxidation of methane, and the electrolysis of water. Neither is in significant use.

While Germany currently uses more coal power than most of Europe, it is cleaning up more quickly than most. By 2030, 2/3 of its energy will be provided by renewables. This was not considered in the study.

Other mistakes arise from using the flawed NEDC driving cycle. This gives unrealistically optimistic numbers for diesel emissions, and unrealistically pessimistic numbers for electrical emissions.

One of the most significant mistakes involves the comparison of the full production and lifecycle emissions of an electric vehicle, including the emission from the electricity uses, versus those for a diesel vehicle. Unfortunately, the study does not account for all the energy used to produce the diesel and supply it to the cars.

The German auto industry has under-reporting diesel emissions, going so far as to install cheat devises on vehicles. These emissions have caused thousands of deaths, something that billions in fines cannot compensate.

Fossil fuel extraction requires large amounts of energy, machinery and in many cases has detrimental effects on the environment. A Canadian favourite, tar sands oil, requires strip-mining tar mixed with sand, this has to be liquified and cleaned for transportation. Then there are transportation costs including tanker grounding, railcar derailments and pipeline leaks, all resulting in massive environmental damage, including ground water contamination.