A Pedagogical Sail

Sabot sailing dinghy on a cradle, fully-rigged, in Sydney Australia 2007-12-16. With minor modifications, the same type of boat was also made in North America. (Photo: Peter4Truth)

The purpose of a sail is to propel a boat or ship forward. It can be used figuratively, to describe mechanisms to propel a person through an educational system alive, and capable of making a social and economic contribution to the world after completing the education. For me, industrial arts was such a mechanism, as it allowed me to survive an academic education. Looking forward through time, I see an engineering workshop (and more specifically a mechatronics workshop located in Inderøy) as a mechanism to help the generation with many names (Gen Z/ iGen/ Plurals/ Post-millennials) to cope with the world’s current insanity.

Yes, it would be more professional to keep personal thoughts at a distance, and to look at a mechatronics workshop’s pedagogy from a theoretical point of view, with comments and statements supported by references to well formulated documents based on impeccable research.

Unfortunately, that is not how the real world works. Everything I’ve every done related to workshop pedagogy, is based on reflections on a single personal experience. As a 13 year old, I decided to build my own boat, an 8 foot (2 400 mm) long Sabot dinghy, similar to a European Optimist dinghy. I made it alone, except for some help from my mother, who made the sail for the boat. Where did I get the self-confidence, which let me start and complete such a comprehensive project, at a relatively young age? The answer is, by taking industrial arts!

A note of thanks. The one person I would like to thank is Vincent Massey Junior High School guidance councilor Allen, who encouraged me, and suggested I build this specific boat. He also told me where I could get the plans (Valley Lumber). I believe they cost me $2 (NOK 12) in 1962. In case one thinks that my boat building skills are inherited, let me assure readers that I have never experienced my father making anything in his life, until he started to make rya rugs as an 80 year old. Yes, he could do some interior house painting, but he rarely repaired anything, and never made anything for the house. Both of my parents prioritized spending their free time out in nature. They were both fishers and hunters, and enjoyed collecting berries and mushrooms, and walking in the wilderness. My mother, who was ten years younger than my father, had a slightly different education, including home economics as a subject. She made a lot of different things, but in the realms of food and textiles.

Unlike my father, I had industrial arts at school, from the 7th to the 9th grade, before I chose electronics as a specialty from the 10th to 12th grade. The school system in British Columbia divided all teaching into seven subjects, all of which got exactly the same number of hours of instruction. Of the five hours that we received over a seven day period for industrial arts, one was once reserved for draughting/ drafting/ technical drawing. The other hours were either electricity and electronics, woodworking or metalworking. One worked with each subject area for about a third of the school year before we pupils were on to the next subject area.

Industrial arts is an educational program that includes the manufacture of wooden or metal objects using a variety of hand or machine tools. In addition, the subject could include other related subject such as electronics, house building, motor repairs and car maintenance. All programs usually had some form of technical drawing as part of the curriculum. Industrial art was reserved for boys. The girls got home economics which included some of the same educational principles, but with a focus on food and sewing. Home economics could be described as second class industrial arts, wrapped for girls!

As a pedagogical term, industrial art came on the scene in 1904 when Charles Russell Richards (1865 – 1936) from the college of teachers, Columbia University, New York suggested replacing manual training. The intention was for all children (or at least all boys in a gender-divided time) in all schools, to gain a wide range of technical skills rather than a single one that gave vocational training.

Most North American males born between 1920 and 1960 understood technical drawings, had used a lathe to make objects in both wood and metal, had wired a house. This is not the case today. Industrial arts ended with most of the gender-divided education in the late 1970s, early 1980s. Girls were finally allowed to fix cars, while the boys were allowed to learn how to cook.

The pedagogy used in Industrial Arts did not begin with Charles Russell Richards, but represents a tradition that can be traced back to Jean-Jacques Rousseau, Johann Pestalozzi, Friedrich Froebel, Edward Sheldon and John Dewey. These people are not unique to the history of industrial arts. Their names are invoked in many divergent subject areas.

Jean-Jacques Rousseau (1712-1778) is appreciated for the application of his educational theories in the classroom. He believed that knowledge was derived from nature, that reality was determined by gathering information through the senses and validating by building relationships, and that people learn gradually and constantly throughout life, and learn to do.

Johann Pestalozzi (1746 – 1827) He has several educational institutions in German and French speaking regions in Switzerland and wrote many works explaining his revolutionary modern education principles. His motto was “Learning the head, hand and heart”. Thanks to Pestalozzi became illiteracy in the 18th century Switzerland almost completely overcome by 1830. Pestalozzi is considered the first of Richard’s pedagogical predecessors, with an educational philosophy focused on the most effective ways of waking students’ ability to understand and process information. With this ability, young people could understand an ever changing world.

Friedrich Froebel (1782-1852) is recognized for establishing (in theory) the first kindergarten in 1837, and for taking into account early childhood needs in education: showing is better than telling. He was very concerned with activities or the activity plan that he felt would develop childhood creativity.

Edward Sheldon (1823 – 1897) founded the Oswego School of Education in 1861. Sheldon believed that the basics should be taught through objects, and students should build things that would benefit them in the classroom as they taught lessons. In 1886, Oswego had a form of manual training as a class under the supervision of the school’s janitor. Oswego became the first teaching school in the United States to teach manual training. Today, SUNY Oswego prepares students to become technology teachers.

John Dewey (1859-1952) believed that students should do (his term, but implying action) to trigger thoughts about what they are doing. Then they should think about what they have done, to stimulate learning. Dewey’s focus was on a methodology that began by identifying difficulties or problems and ending up synthesizing and coordinating knowledge and desires, resulting in the control and recreation of the external world. This is mainly the vision of the Industrial Arts movement. Dewey had a concern about the limitations of manual training. He thought that if the students were just doing something to make something and not to solve a problem, their thoughts would stop and boredom would develop. The learning process will stop.

So I’d like to pause and to reflect. The challenge with the American maker movement is political. Yes, even the term maker has been hijacked by a for-profit industry. While many view it as a continuation of the industrial arts movement, others are eager to look at it as new and different. The latter would like to have Ayn Rand (1905 – 1982) as inspiration. Debbie Chachra, in Why I am Not a Maker, warns us about it:
“A quote often attributed to Gloria Steinem says,” We have begun raising our daughters more like sons … but few have the courage to raise our sons more like our daughters. ” Creator culture, with the goal of giving everyone access to the traditional male culture of making, has focused on the first. But success means devaluing the traditional female domain for care by continuing to enforce the idea that only making things is valuable. Rather, I will see ourselves recognizing the teacher’s work, those who analyze and characterize and criticize, anyone who repairs things, all the others who do valuable work with and for others, above all the caregivers – whose work is not something you can put into a box and sell. »https://www.theatlantic.com/technology/archive/2015/01/why-i-am-not-a-maker/384767/

I suspect it is the Ayn Rand friendly people in the maker movement that promote Jean Piaget (1896 – 1980) as responsible for its educational philosophy. I’m not among these. Piaget’s most famous statement about constructivism, “Understanding is inventing” is really just the title of his 1973 book, To Understand is to Invent, an English translation of Ou va l’education (1971) and Le droit a l’education dans le monde actuel (1948). In short, the teacher’s role in constructivism is to create the conditions for invention rather than providing ready-made knowledge. But this statement had already been expressed by Richards in 1904, almost 70 years earlier.

The reason for Piaget’s favor probably has more with his influence in American computer science and artificial intelligence. One of Piaget’s students, Seymour Papert (1928 – 2016) used Piaget’s work while developing Logo along with Wally Feurzeig (1927 – 2013) and Cynthia Solomon (? -?). Alan Kay (1940 -) used Piaget’s theories as the basis for Dynabook system (and Smalltalk programming language) at the Xerox Palo Alto Research Center (Xerox PARC). The work resulted in the development of the Alto computer, which is the first computer with graphical user interface (GUI). Apple MacIntosh was constructed on the basis of Kay’s research at Xerox PARC.

In Norway, Piaget has had much less appeal than in the US, and much of his status as educator has been transferred to Lev Vygotsky (1896 – 1934). Vygotsky regarded people as cultural beings. He was concerned with the closest development zone (the proximal development zone) and laid the foundation for a socio-cultural learning perspective. There is a balance between what the child learns and what s/he needs of assistance. Lev Vygotsky is considered a social constructionist, where learning takes place in a social interaction between individuals.

One would almost believe that Industrial Arts has become an educational dinosaur. Since Ronald Reagan (1911 – 2004) became the US president in 1981, inequalities between US residents have only increased. The political prioritization of schools in North America has led schools to gradually lose their ability to teach costly practical subjects. This has led to practical skills being exercised over narrower and narrower fields.

The Charm of the Demoscene

A Commodore Amiga 2000 with 3.5 inch floppy drive, 20 MB hard drive, keyboard and mouse. A cathode Ray Tube (CRT) monitor is missing. (Photo: Trafalgarcircle

Imagine home computing in the late 1970s. Machines are weak. Software is unrefined. Popular models include Apple II and its clones, ZX Spectrum, Commodore 64 and Amstrad CPC. The IBM PC, and its clones, have not yet arrived.

I remember a friend showing off his Apple II. It would show a line of text, Name? followed by a blinking cursor. When I typed in my name, and pressed return, it would respond by writing: Hello, Brock! It was easy to be impressed by technology in the late 1970s.

Inspiration for today’s demoscene first came in 1980, when Atari used a looping demo with visual effects and music to show off the features of the Atari 400/800 computers.

Demoscene is a type of computer art, that will be described in more detail later in this post, and in chronological order. It has a darker past, but a lighter present. In this weblog post, many of the terms used will be defined. It is an artform that generally avoids mainstream exposure. According to some sources, about 10 000 people are involved with it.

Cracker = a programmer who alters video game code to remove copy protection. Cracking crew is used where more than one person is involved in the cracking process.

Cractro = (crack intro) an introductory screen used by a cracker/ cracking crew to claim credit for cracking a game. They became very complex a medium to demonstrate superior programming skills, advertise BBSes, greet friends, snub rivals and gain recognition.

More important in Europe, than in other parts of the world, the cractro transmutes into the demo. A cracker community emerges then evolves into an entity independent of gaming and software sharing.

New machines are better suited to support the scene, most specifically the Commodore Amiga and the Atari ST. Some IBM clones are acceptable, if they have sound cards. Not the Apple Macintosh.

More inspiration came in 1985 when Atari demonstrated its latest 8-bit computers with a demo that alternated between a 3D walking robot and a flying spaceship.

That same year, Amiga released a signature demo showing the hardware capability of its Amiga machine, with a large, spinning, checkered ball that cast a translucent shadow.

Demo = a self-contained, originally extremely small, computer program that produces an audio-visual presentation. Its purpose is to demonstrate the programming, visual art and musical skill of its producer.

Demoparty = a festival where demos are produced, after a day or weekend long coding marathon, then presented, voted on by attendees, then released, originally on floppy disks and on bulletin board services (BBS).

Compo = a demoparty competition, traditionally divided into categories where submissions must adhere to certain restrictions: production on a specific type of computer, or a maximum data size. Submissions are almost always rendered in real time. This contrasts with animated movies, which simply record the result of a long and intensive rendering. The purpose of a compo is to push computing hardware to its limits.

Demoscene = computer art subculture focused on producing demos, international in scope.

Demoscener = a computer artist focused on technically challenging aesthetics, but with a final product that is visually and aurally pleasing.

Demogroup = a small, tightly-knit group of demosceners, centered around a coder/ programmer, a musician and a graphician. Some groups may have supporting roles and grow to tens of people, but this is the exception. Demogroups always have names. Individuals within the group have unique handles for self-expression. Demogroups use wordmarks, logos, catchphrases and slogans. They are skilled at public relations and even human resource management. The demogroup is undoubtedly the most important social unit in the demoscene.

While belonging to a group is often synonymous to being a demoscener, there are individual productions. Not infrequently, this individual will adopt a group name. There are also fake groups, involving secret identities for making humorous, political or vulgar productions without harming the reputation of the original group. Individuals invent new handles, or pseudo-pseudonyms.

There used to be an American demoscene, but it barely exists today. Who killed the American demoscene? The simple answer is the American crackdown on software piracy. European copyright law only criminalized for-profit breaches. In many European countries, including the Netherlands, Greece, Finland, Sweden and Norway, it was possible for the cracker to repent and to transform into a law-abiding demoscener.

The Amiga 2000

Our first family computer was a Commodore Amiga 1000, on loan to us while we waited for our Amiga 2000 to arrive, which it did some weeks later. In 1986/ 7, these were the best residential computers money could buy. If I remember correctly, the Amiga 2000 cost NOK 19 000 (a little over US$ 2 000 then or about US$ 4 000 in 2019.)

We bought the Amiga while living in Bodø, in Northern Norway. The company that sold it consisted of two young male idealists, who were among the most active Amiga enthusiasts in the country. In addition to selling machines, they developed software and also published a Norwegian language Amiga magazine. Some of my work appeared there. They had the largest collection of 3.5 inch Amiga floppy disks in Norway, which contained software and content on every conceivable topic. They made cractros.

The Amiga 2000 was an advanced machine. Some even claimed at the time that it would last into the 21st century. In contrast to the Amiga 1000, it allowed expansion cards to be added internally: SCSI host adapters, memory cards, CPU cards, network cards, graphics cards, serial port cards, and PC compatibility cards were available. We used a SCSI adapter with a hard drive, and a PC card, that allowed us to run both Amiga and PC-DOS programs. The Amiga 2000 also had five Zorro II card slots, the motherboard also has four PC ISA slots, two of which are inline with Zorro II slots for use with the A2088 bridgeboard, which provided IBM PC XT compatibility.

There were about 4 850 000 Amiga machines of all types sold. The machines were most popular in the United Kingdom and Germany, with about 1.5 million sold in each country. Sales in the high hundreds of thousands were made in other European nations. The machine was less popular in North America, where only about 700 000 were sold

The Charm of an Einride T-pod

The world premiere of an Einride T-pod, a level 4 autonomous, electric vehicle with a mass of 26 tons, on a public road in Jonskjöping, Sweden. 2019-05-15. Photo: Einride.

Robert Falck, a former Volvo executive, is founder and CEO of Einride. Together with, Jochen Thewes, CEO of DB Schenker, a major logistics company, and Mats Grundius, CEO of DB Schenker Cluster Sweden, Denmark, Iceland, he hosted a world premiere on Wednesday, 2019-05-15.

Einride and DB Schenker entered into a commercial agreement in 2018-04 that includes a pilot in Jönköping with an option for additional pilots internationally.

Einride’s signature product is a T-Pod truck. With a Gross Vehicle Weight of 26 tons, its most notable characteristics are its electric drive train, and autonomous driving capabilities. These two features reduce road freight operating costs by about 60 percent compared to a diesel truck with driver.

However, Einride wants more, a safe, efficient and sustainable road freight transport solution, that can reduce CO2 emissions by up to 90 percent

The T-Pod is level 4 autonomous, the second highest category. It uses a Nvidia Drive platform to process visual data in real time. An operator, sitting anywhere in the world but most probably in Jonsköping, can supervise and control up to 10 vehicles simultaneously. The T-Pod has permits from the Swedish Transport Agency to make short trips – between a warehouse and a terminal – on a public road in an industrial area in Jonkoping, located in central Sweden, at speeds of up to 5 km/h.

In 2018-11, Einride and DB Schenker initiated the first installation of an autonomous, all-electric truck or “T-pod” at a closed DB Schenker facility in Jönköping. It was the first commercial installation of its kind in the world.

On 2019-03-07 the Swedish Transport Agency concluded that the T-pod is able to operate in accordance with Swedish traffic regulations. On 2019-03-11, the agency approved Einride’s application to expand the pilot to a public road, within an industrial area – between a warehouse and a terminal. The permit is valid until 2020-12-31.

Since Einride is primarily a software and operations company, they are seeking a partnership with a truck manufacturing company.

Falck said Einride would apply for more public route permits next year (2020). It was also planning to expand to the United States.

For further information, see: https://www.einride.tech/

Methane vs Electricity

The Solar (and battery) powered Sion EV, to be made by Sono Motors at the former Saab car plant at Trollhatten, Sweden. A more environmentally friendly choice than a methane powered vehicle. (Photo Sono Motors)

A study from the Munich-based IFO Institute for Economic Research, claims that battery electric cars are dirtier than those that are diesel powered. It proposes methane based, hydrogen vehicles. This study is significantly flawed.

For inforation about the report see: http://www.cesifo-group.de/ifoHome/presse/Pressemitteilungen/Pressemitteilungen-Archiv/2019/Q2/pm_20190417_sd08-Elektroautos.html

IFO is an acronym from Information and Forschung (research). As one of Germany’s largest economic think-tanks, it analyses economic policy and is widely known for its monthly IFO Business Climate Index for Germany. Its research output is significant: about a quarter of the articles published by German research institutes in international journals in economics in 2006 were from IFO researchers. Unfortunately, I have been unable to find more recent data to support this claim. According to the Frankfurter Allgemeine Zeitung ranking, it is also Germany’s most influential economics research institute.

Part of the problem is the recycling of disproved research. The claim promoted by ICE (internal combustion engine) automakers and the fossil fuel industry, is that electric vehicles are worse for the environment because they are powered by dirty electricity.

Studies looking at overall emissions based on electricity generation have debunked this and showed that electric cars are cleaner and becoming cleaner as renewable energy is becoming an increasingly more important part of the electric grid. Previous studies have shown that EVs are cleaner than diesel no matter which European grid electricity is used.

The new twist in the new report, is that EVs use significant amounts of energy in the mining and processing of lithium, cobalt, and manganese, which are critical raw materials for the production of EV batteries.

The major error here, is an assumption that EV batteries become hazardous waste after 150 000 km or ten years. This is untrue. First, 150 000 km is shorter than the warranty period for an EV battery, which is generally 160 000 km.

There are requirements in place throughout Europe for the recycling of batteries. Even in a depleted state, they are valuable because lithium is a scarce resourse. Lthium ion batteries are not considered hazardous waste, although lead acid batteries are, because of the lead.

Cobalt and manganese are also recycled.

The study also concludes that methane-powered gasoline engines or hydrogen motors could cut CO2 emissions by a third and possibly eliminate the need for diesel motors. Again the conclusions are not matched by the facts.

Most hydrogen is produced using steam-methane reforming, a production process in which high-temperature steam (700°C–1,000°C) is used to produce hydrogen from a methane source, such as natural gas. Methane reacts with steam under 3–25 bar pressure in the presence of a catalyst to produce hydrogen, carbon monoxide, and a relatively small amount of carbon dioxide. Steam reforming is endothermic, heat must be supplied to the process for the reaction to proceed.

This is followed by a water-gas shift reaction, where carbon monoxide and steam are reacted using a catalyst to produce carbon dioxide and more hydrogen. In a final process step called pressure-swing adsorption, carbon dioxide and other impurities are removed from the gas stream, leaving essentially pure hydrogen. Steam reforming can also be used to produce hydrogen from other fuels, such as ethanol or propane.

Steam-methane reforming reaction
CH4 + H2O (+ heat) → CO + 3H2

Water-gas shift reaction
CO + H2O → CO2 + H2 (+ small amount of heat)

The production of 1 ton of hydrogen produced 19 tons of CO2.

Hydrogen can be produced through other processes, including the partial oxidation of methane, and the electrolysis of water. Neither is in significant use.

While Germany currently uses more coal power than most of Europe, it is cleaning up more quickly than most. By 2030, 2/3 of its energy will be provided by renewables. This was not considered in the study.

Other mistakes arise from using the flawed NEDC driving cycle. This gives unrealistically optimistic numbers for diesel emissions, and unrealistically pessimistic numbers for electrical emissions.

One of the most significant mistakes involves the comparison of the full production and lifecycle emissions of an electric vehicle, including the emission from the electricity uses, versus those for a diesel vehicle. Unfortunately, the study does not account for all the energy used to produce the diesel and supply it to the cars.

The German auto industry has under-reporting diesel emissions, going so far as to install cheat devises on vehicles. These emissions have caused thousands of deaths, something that billions in fines cannot compensate.

Fossil fuel extraction requires large amounts of energy, machinery and in many cases has detrimental effects on the environment. A Canadian favourite, tar sands oil, requires strip-mining tar mixed with sand, this has to be liquified and cleaned for transportation. Then there are transportation costs including tanker grounding, railcar derailments and pipeline leaks, all resulting in massive environmental damage, including ground water contamination.

Optotypes

Originally written: 2018.01.01 20:46;Updated 2019.05.03 15:00

20/20 vision is just so 19th century. In many locations it is referred to as 6/6, in Europe as 1.0. Vision acuity tests originate with their invention in 1843 by ophthalmologist Heinrich Kuechler (1811–1873), in Darmstadt, Germany.

500px-Snellen_chart.svg
Snellen Chart (Artwork: Jeff Dahl, based on public domain document)

In 1862, Dutch ophthalmologist Herman Snellen (1834 – 1908) developed an optotype to estimate visual acuity. Optotype? Most people call it by its synonym, eye chart. In full size, the E at the top will be 88.7 mm (3.5 inches) tall. The other letters are proportionately smaller. When viewed at a distance of 20 feet = 6096 mm, normally rounded down to six meters, acuity can be estimated based on the smallest line a person can read.

In 1888, Swiss born/ Paris resident Edmund Landolt (1846-1926) improved upon this with the Landolt C, a broken ring that uses the Snellen letter C. Both the stroke width and the gap are 1/5 of the diameter. The gap can be oriented in various positions. Normally, there are eight different alignments, each 45° apart. The person being examined must decide where the gap is. The size of the ring is reduced until a specified error rate is exceeded. The Landolt C is the standard chart used for acuity measurement in most European countries. It is specified in ISO standard 8596.

A Landolt C optotype. Not easy to find on the Internet, because many charts only show four positions, rather than the official eight.

In the first paragraph, 20/20 vision (and two equivalents) were referred to. 20/20 is just an American reference value for visual acuity. In the rest of the world this norm was called 6/6 vision. In Europe, they actually perform division on the numbers and end up with 1.0 to describe a condition where, at 6 meters distance, a human eye is able to separate contours that are approximately 1.75 mm apart. Vision of 20/40, 6/12 or 0.5 corresponds to lower, vision of 20/10, 6/3 or 2.0 to better performance.

Normal individuals have an acuity of, or better than, 20/13.3, 6/4 or 1.5, but it is dependent on age and many other factors. 20/20, 6/6 or 1.0 vision is not perfect or even particularly good acuity. It is simply good enough. To drive smaller commercial vehicles in Norway, 20/25, 6/7.5 or 0.8 acuity is required. For passenger vehicles the requirement is 20/40, 6/12 or 0.5.

The Charm of a Nobe

A Nobe 100. Who needs more than three wheels? (Photo: Nobe)

The Nobe is 99% nostalgia, 1% practical motoring.

There are many different ways to judge technology. In looking at the Nobe’s electric design, it successfully plays on the strings of nostalgia. Of course it is a technologically advanced three-wheel drive battery electric vehicle. Designed and made in Tallinn, Estonia.

A nostalgic interior, with electric windows and air conditioning, but without airbags. (Photo: Nobe

In their mission statement, Nobe writes that they want to change people´s perceptions as well as their driving habits to finally make the electric car cool. They want to cross-wire rational analysis with emotions.

Their three-fold goal is to make the Nobe upgradeable, recyclable and sustainable, ending the disposable car. First, they want to make it easy for customers to upgrade their batteries, motor and electronics. Second, they want exterior panels to be swapable and recyclable. Third, they will never take/ send a Nobe to a scrapyard.

The Nobe features all-wheel drive. It is designed to grip the road and accelerate. Some versions are equipped with an optional M (muscle car) switch for increased power. The Nobe is equipped with dual batteries. The main battery puts power into each of the three powered wheels. A separate battery provides power for the supporting systems such as light, heat and entertainment.

When I first saw a Nobe, I found it an attractive vehicle. Since then, any thrill in the design has faded away. Of course the values expressed in the mission statement are admirable. Would I buy a Nobe? I don’t think so. Three wheels are only suitable for flatlands, Estonia or Michigan, not Norway or British Columbia.

When I look back at the 1960s, and at the height of my interest in cars, I was most interested in a white, second choice red, Triumph TR-4A. It was a road machine, suitable for the moutainous yet paved highways of British Columbia.

These days, a road machine has only limited appeal, if only because of its harsh yet functional suspension. In terms of sports cars, I am more attracted to a yellow or green Sunbeam Alpine that offered a softer ride, and more especially the 1964-5 Series IV, that featured a new rear styling, with more modest tailfins. It is pure nostalgia, a reminder that my first car was also made by Rootes Group, a Hillman Minx convertible.

I don’t have to buy a Nobe, a Triumph or an Alpine. In my dreams, I can drive any car I want, and it costs me nothing. Even the insurance, the fuel and any repairs are free. A bargain.

A Sunbeam Alpine IV at Horsted Keynes in 2012. Photo: Andrew Bone

The Nobe 100 has the following specifications:

Vehicle class: L5e – powered trike

Chassis: Steel tubing

Suspension: GAZ Gold Pro, custom

Body: Nextene, soundproof

Main battery: 21 kwh Li-On- or 25 kwh Li-On (GT)

Mobile battery: 4 kwh Li-On- or 5 kw Li-On (GT)

Range: 260 km combined: 210 on main 21 kwh battery, 50 km on additional, portable suitcase battery, or 310 km combined: 260 km main battery + 50 km on portable with 25 kwh battery.

Top Speed: 130 km/h

Engine: Three in-wheel electric motors, combined max power 76 kw

Drive: three-wheeled drive

Weight: 590 kg

Acceleration: 0–100 km/h 5,9 sec

Nobe has two doors, three seats and on the GT version, a removable Targa hardtop. The interior has Belize veneer details and brushed steel.

Hood ornament: the Foxy Lady.

The Foxy Lady. (Photo: Nobe)