Vehicle Devices

The Fisker Ocean will be contract manufactured by the Canadian owned, Austrian located, Magna Steyr facility in Graz, Austria. Photo: Fisker, Inc.

While many Americans will be focused on their presidential election taking place today (2020-11-03), this observer is awaiting the result of the Massachusetts Right to Repair Initiative (2020), a referendum appearing on today’s Massachusetts general election ballot. This could update the state’s right to repair laws to include telematic electronic vehicle data. This was specifically excluded on the 2012 referendum that passed with 86% of the vote.

It comes as no surprise that Elon Musk is opposed to the Massachusetts Right to Repair Initiative (2020), and is actively encouraging people to vote no. Right to repair legislation is generally supported by consumers, independent repair/ after-market companies and associations. It is generally opposed by original equipment manufacturers (OEMs), such as Ford or GM, and dealerships.

The Clean Air Act of 1963, is a United States federal law that with the purpose of controlling air pollution. It has been amended several times since then. The 1990 amendments required all vehicles built after 1994 to include on-board computer systems to monitor vehicle emissions. The bill also required automakers to provide independent repairers the same emissions service information as provided to franchised new car dealers. California further passed legislation requiring that all emissions related service information and tools be made available to independent shops. Unlike the Clean Air Act, the California bill also required the car companies to maintain web sites which contained all of their service information and which was accessible on a subscription basis to repair shops and car owners.

Today, microprocessors control operation-critical vehicle systems: brakes/ ignition (on internal combustion engine (ICE) vehicles) / air bags/ steering/ and more. Repairing/ servicing requires computer diagnostic tools. At the same time, OEMs have taken on gatekeeper roles to control information and parts necessary for service/ repairs. Control, in the above sentence, is particularly aimed at restricting access.

Most ICE vehicles use a controller area network (CAN bus) to manage microcontrollers, smart sensors and other devices to communicate with each other without a host computer. Each of these components is referred to as a node, with a hierarchical structure in relation to each other. No two nodes are equal, one always ranks above or below the other. The network features a message-based protocol. When two or more nodes transmit simultaneously, it is always the highest ranking node that is allowed to continue.

The electronic control unit (ECU) is typically based on about 70 nodes, each featuring, say, a 32-bit, 40 MHz microprocessor with about 1 MB of memory. This is orders of magnitude less powerful than those used in laptop or desktop computers.

Each node has to be able to handle a large set of processing tasks. These include: Analog-to-digital converters (ADC) – where a physical property usually measured in volts is converted into a digital number; Digital-to-analog converters (DAC) – provide an analog voltage output to drive some component, with a digital number telling the system what analog voltage to supply; signal conditioners make adjustments to input or output data so that it aligns more correctly with real-world needs; communication standards are implemented capable of sending appropriate signals to other nodes. The CAN-bus communication standard allows for speeds of up to 500 kilobits per second (Kbps) using two wires.

The CAN-bus, and similar devices, simplify vehicle wiring through the use of smart sensors and multiplexing. In ancient times (prior to about 1990) a wire ran from each switch to the device it powered. The circuit was completed by grounding one terminal of the battery to the chassis.

Smart sensors are integrated components, that include not only the sensor, but an ADC and a microprocessor. This allows it to read a voltage, make compensations for temperature, pressure or other factors using compensation curves or calculations, and then send digital output signals onto the CAN-bus.

With multiplexing a microprocessor monitors sensors in one area of the vehicle, such as a door. When that a specific window button is pressed “downward”, the microprocessor will activate a relay that will, in turn, provide power to the window motor so it moves downward.

Among the parts carmakers buy assembled from external suppliers are instrument clusters. These are designed by the supplier to the vehicle maker’s specifications. This is advantageous for both for the maker and the supplier. However, it also takes power away from the OEMs, and gives it to suppliers, such as Bosch or Continental.

Some of the nodes include: Battery Management System (BMS); Brake Control Module (BCM) which may also incorporate an Anti-locking an Braking System (ABS) and Electronic Stability Control (ESC); Door control unit (DCU); Electric Power Steering Control Unit (PSCU) or a Motor-driven Power Steering Unit (MPSU); Human-machine interface (HMI); Powertrain control module (PCM): which may combine an Engine Control Unit (ECU) and a transmission control unit (TCU); Seat Control Unit; Speed control unit (SCU);Telematic control unit (TCU).

Confusingly, ECU is also used as an abbreviation for the Engine Control Unit, which is one specific node. Here, and in many other circumstances to avoid confusion, it will be referred to as an ECM = Engine Control Module. It uses closed-loop control. Depending on the intended usage of the vehicle, the ECM will optimize specific goals: maximum torque, maximum fuel efficiency, minimum emissions, etc.

The CAN-bus allows module to communicate faults (errors) to a central module, where they are stored, then sent onwards to an off-board diagnostic tool, when it is connected. This alerts service personnel to system errors.

With electrification already a reality, and autonomous driving becoming one soon, the CAN-bus methodology will be unable the flow of data. Tesla uses a dual (read: duplicate/ redundant) artificial intelligence (AI) based, Samsung produced microprocessor system, running at 2 GHZ, to control vehicles. Compared to the CAN system, these are extremely powerful,

Volkswagen’s ID3 is going the same route, where it is using high-performance computers (HPC) supplied by Continental for control purposes.

Some vehicle designers do not have the capability to set their designs out in life. A notable example is Fisker. Danish-American Henrik Fisker (1963 – ) has made some exciting vehicle designs, but not all of the businesses he has started have survived. The latest manifestation is Fisker Inc., which was started in 2016. It has presented a SUV EV, Ocean, and a pickup proposal, Alaskan. With the Ocean’s design finalized, it is outsourcing vehicle production of its Ocean to Magna Steyr, a Canadian-Austrian contract vehicle manufacturer. For Fisker, this will reduce manufacturing complexities and costs, in contrast to building and operating its own factory. Magna’s electric vehicle platform, Partial payment for this will be in the form of (up to) 6% stake of Fisker Inc.’s equity, currently valued at $3 billion.

Returning to the Massachusetts Right to Repair Initiative (2020), a yes vote can have dramatic consequences for the computing equipment put on vehicles (ICE as well as EVs) in the future. Starting with the model year 2022, all vehicles with telematic systems, sold in Massachusetts (but more likely throughout the United States, if not the world) will have to be equipped with a standardized open access data platform.

On 2020-10-15, Foxconn, the Taiwanese multinational electronics contract manufacturer, responsible for production of an estimated 40% of all consumer electronics sold worldwide, announced its MIH open platform for electric vehicles. If Tesla is the iPhone of electric vehicles, Foxconn wants to be its Android. Foxconn has been involved in automotive manufacturing since 2007.

Currently, according to Foxconn, the battery pack accounts for 30 to 35% of the total production cost of an EV; powertrain = 20 to 25%; Embedded Electronic Architecture (EEA) = 15 to 20%; body = 13 to 15%; otheto develop and establish an open industry standard for automotive electrical-electronic (E/E) architecturer, including wheels & tires = 10 to 12%.

The MIH platform would be prepared for 5G and 6G, comply with AUTomotive Open System ARchitecture (AUTOSAR) and ISO 26262, and be ready for OTA (over-the-air) updates and V2X (vehicle-to-anything) communication.

AUTOSAR has been in operation since 2003 Its founding members include: Bavarian Motor Works (BMW), Robert Bosch GmbH, Continental AG, Daimler AG, Siemens VDO (until its acquisition by Continental in 2008), and Volkswagen. Later members include Ford Motor Company, Groupe PSA, Toyota Motor Corporation (all 2003), General Motors (2004). Thus, it represents a very large proporttion of the automotive industry. Its objective is to create/ establish an open and standardized software architecture for automotive electronic control units (ECUs). Other goals include “the scalability to different vehicle and platform variants, transferability of software, the consideration of availability and safety requirements, a collaboration between various partners, sustainable use of natural resources, and maintainability during the whole product lifecycle.”

ISO 26262, Road vehicles – Functional safety, was defined in 2011, and revised in 2018.

The MIH platform can accommodate wheelbases from 2 750 to 3 100 mm, with tracks from 1 590 to 1 700 mm, ground clearance from 126 to 211 mm. Three battery packs will be available. Vehicles can be rear wheel drive (RWD), front wheel drive (FWD) or all wheel drive (AWD). Motors on the front axle can be: 95 kW, 150 kW or 200 kW. Motors at the rear can be: 150 kW, 200 kW, 240 kW, and 340 kW. This allows a range of vehicles from a FWD with 95 kW to an AWD with 540 kW.

Part of the MIH strategy is to use mega castings. Foxconn cites one example, where they reduced 7 front suspension body panels to a single cast part and 27 rear longitudinal rail components to yet another single cast part, using a 4.2 Gg = 4 200 Mg (commonly called a ton) die-cast machine.

This post will end with a rhetorical question: What is a vehicle device? There may be many answers, but there are three I would like readers to consider. The first, is that there are subcomponents on a vehicle that could be regarded as devices. Second, the vehicle itself is also a device. Indeed, unlike a so-called mobile phone, which is a hand-held device, a vehicle is a true mobile device. Other potential members of this category include robot lawnmowers, electric airplanes and exoskeletons that are sometimes used by people with mobility issues. The third, is that the production platform is the device.

One Reply to “Vehicle Devices”

  1. About 75% of Massachusetts voters approved ballot Question 1, which expands the Right to Repair law by giving car owners and independent auto shops greater access to data related to vehicle maintenance and repair.

    Vehicle repair shops and parts suppliers supported the legislation, while vehicle manufacturers and their dealerships opposed it.

Leave a Reply

Your email address will not be published. Required fields are marked *