Arcimoto

The Arcimoto Deliverator, is a last-mile battery electric delivery vehicle, made in Eugene, Oregon, USA. (Photo: Arcimoto)

Arcimoto describes itself as a manufacturer of ultra-efficient electric vehicles. These are (relatively) low cost and low environmental impact vehicles.

The Fun Utility Vehicle (FUV) is a three-wheeled, two-passenger tandem = seated one behind the other, vehicle. This vehicle uses a platform that forms the basis for other models. Specifications for the FUV are shown in the table below. All values are converted and approximate. American units are available from the Wikipedia article on Arcimoto, or the company website.

Acceleration0-100 km/h in 7.5 s
Top Speed120 km/h
Turning Circle8 840 mm
Power57 kW
Range160 km city
ca 100 km @ 90 km/h
ca 50 @ 110 km/h
Overall Length2 870 mm
Overall Width1 549 mm
Max Height1 651 mm
Ground Clearance140 mm (unladen)
Wheelbase2 032 mm
Shipping Weight590 kg
GVWR816 kg
Specifications for the Arcimoto Fun Utility Vehicle, converted to conventional metric units.

Munro & Associates, is providing engineering advice to Arcimoto. Some of this work is related to product engineering, such as reducing vehicle weight to 500 kg. Others aspects relate to expanding production capacity and profitability. Arcimoto has two strategic directions: It can focus on expanding production to 50 000 units/year, or it can concentrate on higher profit margin products (Deliverator/ Rapid Responder) at its current 3 – 5 000 unit/year rate, or some combination of both. On 2021-01-06, Agreed to purchase a larger, 17 000 square meter manufacturing facility, a few blocks away from its previous/ current location in Eugene.

An aside: Sandy Munro (? – ) is a Canadian automotive engineer, who started his working life as a tool and die maker. He worked for Ford, starting in 1977, but left in 1988 to start his own consultancy. His work incorporates design for assembly (DFA)/ design for manufacturability (DFM) principles. His focus is on lean design, which is also the name of his website. His tear-down reports critically examine quality issues of specific vehicle models. They are most often used by assorted Asian start-ups. As the wise, old man of the automotive industry, he begins his YouTube videos with, “Hey, Boys and Girls …” Munro is also assisting Aptera with a relaunch of their vehicle, abandoned ca. 2009.

The FUV platform uses pouch cells from Farasis Energy, a Chinese battery manufacturer, providing a total of 19.2 kWh. While the battery is capable of accepting level 2 charging, Arcimoto plans on making fleet vehicles capable of handle higher charging rates.

Arcimoto is not developing in-house autonomous driving capabilities, but provide a foundation for third party hardware and software that will integrate into the vehicle platform. For example, steering is drive by wire allowing software to control wheel direction without additional hardware. Advanced driver-assistance system (ADAS) features will be gradually added up to level 5 (Eyes off) autonomous driving.

The Rapid Responder™ is an emergency response vehicle that retains the two passenger configuration, but has equipment found on emergency vehicles. It is inexpensive (US$ 25 000), easily manoeuvrable through traffic, and capable of reaching places inaccessible to large trucks.

The Deliverator® replaces the rear seat with a large cargo area accessible by a door on the starboard side (right side facing forward) for last-mile delivery. Because of its small footprint, it can park in places unavailable to larger vehicles.

In development is the Cameo™. The passenger seat and storage compartment is replaced with a rear-facing seat, for a camera person to film various activities. It is aimed at the “film and influencer industry”. Also in development is a flat-bed pickup variant, and the Roadster, “Anticipated to be released in the first half of 2021, the Roadster is designed to be the ultimate on-road fun machine. Built on our patented three-wheel all-electric platform, … [it] features an incredibly low and forward center of gravity, twin-motor front wheel drive, instant torque, and a fully-connected seating stance.”

On 2021-01-26, it was anounced that Arcimoto will be buying Tilting Motor Works’ assets for around US$10 million, along with Arcimoto shares. Arcimoto want to integrate these into future products. TRiO, which is the most popular three-wheel conversion kit for touring motorcycles, provides a comfortable and stable ride, but with the riding characteristics of a motorcycle. This means that the rider/ driver can drive/ pilot their vehicle as if it were a two-wheeled motorcycle, yet eliminate the need to put their feet down while at a stop, or riding in slow traffic.

Tilting Motor Works’ technology in operation. Photo: Tilting Motor Works.

Upcoming electric vehicle posts

With so much time spent researching and writing about computing, there has been less time available to research and write about electric vehicles. Currently, five drafts of weblog posts are either scheduled or pending. These are:

Aptera will be the subject of the next weblog post on electric vehicles. It is a three-wheeled streamlined (enclosed) vehicle. Originally scheduled to be launched ca. 2010, this vehicle was a focus during my teaching career. The project was abandoned, but has since been revised.

Paxster has much in common with the Arcimoto Deliverator, but is a four-wheeled vehicle. It used for urban mail distribution by the Norwegian postal service, Posten.

Frikar is a pod bike, made in Sandnes, Norway.

Eav from Electric Assisted Vehicles Limited, of Bicester, England, is an eCargo bike with electric power assistance for last-mile transport solutions.

e-Cub is about Shanghai Custom’s electric conversion of the world’s most popular vehicle, the Honda (Super) Cub, with over 100 million units having been produced since 1958.

Mobilize is the name of Renault’s new mobility division. This division will offer car-sharing, energy and data-related services to help make transportation more sustainable. Their first prototype, the EZ-1, was presented 2021-01-15. A production model could be a replacement for the Renault Twizzy.

Additional electric vehicles will be discussed in Downsizing the Garage, scheduled for 2021-10-29, the fourth anniversary of Stuffing a 10-car garage, which appeared 2017-10-29.

Panel Vans

A 1961 Hillman Husky panel van in Christchurch, New Zealand. This is an Audax design from Raymond Loewy (1893 – 1986), who also designed vehicles for Studebaker and International Harvester. (Photo: Riley, 2011-10-23)

A panel van is a cargo vehicle with (up to) three distinguishing characteristics. First, it is based on a passenger car chassis. Second, there is typically only one row of seats for a driver and either one or two passengers. The area behind this row is for cargo/ goods/ freight. Third, (optionally,)there are no side windows behind the B-pillar, which is the roof support for the vehicle immediately behind the front doors.

In the past, some panel vans were almost identical to station wagons, but with glass side-windows replaced with steel, and rear seats removed. In the above photo, the windows are still in place, but painted with signage. Others featured a raised cargo area, behind the B-pillar. British panel vans, especially the Hillman Husky and Commer Cob, with their Audax design from 1960 to 1965, by Raymond Loewy (1893 – 1986), appealed most to me in the 1960s.

An aside: In part, this preference for British vehicles came from spending most summers in Kelowna, British Columbia, where my mother grew up. The community seemed to have a split personality: Half of the population drove British cars, the other half American. The first vehicle I ever drove was a Chevrolet pickup, in a farm field. I also spent a lot of time driving to beaches in the back of my aunt’s 1939 Plymouth. However, most of my mother’s friends had their own Austin A40s, Morris Minors, and even a Mini, bought in 1960.

By the 1970s, station wagons such as the Volkswagen Squareback and Volvo Amazon station wagon/ 125 and, later, Volvo 145 were also favourably viewed. This position was overtaken by the Saab 95 panel van in the 1980s and early 1990s. Our landlord in Aukra, Norway, had such a vehicle. Sometimes he would take us into Molde, about 30 km away, with Trish sitting in the passenger seat, while I lounged in the back. At the time, this was all perfectly legal. With the introduction of the Citroën Berlingo and Renault Kangoo in 1996, these two models dominated my thoughts. They no longer featured the front end, and lower seating height of a small car, but had a distinctive cockpit that improved visibility.

Part of the appeal of a panel van is that both sides and, potentially, the back, can be used to display artwork. This is part of their charm, and I have spent considerable time contemplating what I would paint on these surfaces. This characteristic does not extend to the panel van’s passenger vehicle cousin, the multi-purpose vehicle (MPV). Despite their inferiority in displaying artwork, they also have one major advantage. When they aren’t busy carrying cargo, they can also haul up to five, and sometimes even seven people. This group of vehicles also includes the Kia Soul.

Since retirement in 2017, I have been unable to justify buying a panel van. We are reduced to one vehicle in the household. Even if that one vehicle is used mainly by a single person at a time, and sometimes even two people, it has to be capable of carrying at least four people. Unfortunately, the premise of owning a panel van was dependent on having more than one vehicle in the household. Any new vehicle means that it won’t be a panel van, but could be an MPV.

Why an MPV? Apart from driving to the local store, or SpirenTEK, the local hacker space, which could be done with any vehicle, the answer is to transform it into a primitive mini-camper, that could be used to explore Trøndelag/ Norway/ Scandinavia/ Europe at a leisurely pace. There are companies that make removable camper conversions, but it is also something that could be made in almost any woodworking workshop. Thus, the MPV is the most relevant type of vehicle to consider.

There are smaller contenders: a Fiat 500 Giardiniera (if it ever makes it into production, hopefully with a side opening tailgate), a Hyundai Kona, or a Kia e-Niro, all vehicles that have suitable range! If worse comes to worse and price becomes an important consideration, there is always a Dacia Spring, or a Renault Zöe. Renault has also said it will reduce the number of platforms it builds on, which probably means it will discontinue its Renault Twingo EV. They have also said that they will introduce a Renault 5 hatchback EV in 2023 or 2024 (probably a replacement for the Zöe), and a Renault 4 retrostyled mini-SUV EV in 2025. These would both use a new CMF-B EV platform, designed for electric compact vehicles, and be built at the Douai plant near Lille, France. None of these vehicles would make a suitable mini-camper. Apart from power, torque and sufficient battery capacity, which determines range, liquid battery cooling is imperative.

EV variant vans prior to 2021 were better suited to flat, slow moving urban landscapes, than to the mountainous terrain of Norway. Fortunately, both Renault and Citroën have updated their smaller vans. Soon these will be available with improved motors and batteries, so that they provide sufficient range and power. Are they once again fit for purpose? The availability of liquid battery cooling will provide the answer. If not, the Kia Soul EV does.

A 2021 Renault Kangoo, a multi-purpose vehicle, available in ICE and EV (called ZE in Renault-speak) varieties. Buying one is dependent on it coming with liquid cooled batteries. Photo: Renault.

Update: On 2021-02-14 some minor changes were made to improve the text, and to help people better understand locations in Canada and Norway.

Sports Cars

A 1961 advertisements for a Volvo P1800 featured this photo. Call it what you will, the P1800 is nimble, designed for the mountains and winters of Scandinavia, but equally appropriate in British Columbia. One is currently being restored across the bridge in Mosvik, by Arne Ivar Sundseth, the son of the original builder and first owner of Cliff Cottage. Photo: Volvo.

Automotive prejudice is not necessarily against something. Often, it is for a particular nationality, brand or model. Some people appreciate vehicles because they originate in a particular country, or have a perceived status, closely related to the price of the vehicle when new. For others, use or performance measures are more important.

In British Columbia, where I grew up, and in Norway, where I grew old, there was and is, respectively, the odd freeway/ motorway allowing one to drive in a relatively straight line, but on most roads drivers must contend with the geography of mountains and valleys, and snowy road conditions. With few exceptions, an American built car with a large V-8 engine, and a soft suspension, is ill matched to the terrain. One needs something nimble, which is the adjective I use to distinguish sports cars from other vehicles.

Until the term got overworked and degraded, GT (Grand Tourismo = Grand Touring) cars were luxury sports vehicles for the monied classes. The only one that ever made an impact on me was a French Facel Vega, massively powered with a Chrysler V-8 engine. Other vehicles in this class included the German Mercedes Benz 300 SL Gullwing, the Italian Maserati Sebring, the American Studebaker Gran Tourismo Hawk and the English Alvis TD 21.

Slightly below this were less luxurious vehicles, the Jaguar XK-E, (known as the E-type in Britain, and among hard-core North American enthusiasts), the Chevrolet Corvette, the Porsche 356, the Volvo P1800 and the Alfa Romeo Giulia.

The British dominated the mass market sports cars, which also form their own hierarchy. This writer’s subjective ranking placed the Lotus Elite (aka Type 14), and its replacement, the Lotus Elan (aka Type 26) at the top. Immediately below this was the Austin Healey 3000, with its 6-cylinder 3-litre engine. Then came a series of Triumphs which culminated in the TR-4A, closely followed by MGs, ending with the MGB.

At the bottom of the heap were the cheap sports cars, the MG Midget and its sister the Austin Healey Sprite, along with its cousin, the Triumph Spitfire. The Triumph Herald, will not be mentioned, even if a convertible version was owned by John Lennon (1940 – 1980).

While I had an affection for British vehicles, they had cantankerous engines that needed considerable attention, and almost daily adjustment. The British sports car that avoided this best was, in my rather prejudiced opinion, the Sunbeam Alpine, made by Rootes Group. This was the first Bond car, appearing in Dr. No in 1962. It was also Maxwell Smart’s vehicle in the 1960s American comedy series, Get Smart, in its V-8 Sunbeam Tiger variant.

If I were to buy a sports car today it would be as an initial step in an educational project to learn technical skills surrounding vehicle electrification. This would hopefully result in a disposal problem being transformed into a functioning electric vehicle.

The specific vehicle would have to meet at least two of three criteria. First, it should have recycling issues, which should have the added benefit of being cheap. Second, it should come either without an engine (preferred) or with a defective engine. Third, and one potential cause of the recycling issue, it should have a fibreglass body. Yes, the Saab Sonett II and the Lotus Elan are both attractive, fibreglass vehicles, but existing models with functioning engines should be preserved. If for some reason they have engine challenges, they are top candidates.

Fibreglass replica cars, much like fibreglass boats, pose a recycling challenge. Some other people may even regard them as illegitimate. Yet, sports cars have often been considered works in progress by their owners. Thus, readers are encouraged to consider adopting one, to give it new life with an electric driveline, and allowing it to become a beloved object, that upcoming generations will yearn to inherit, despite its obvious imperfections.

People interested in undertaking their own conversions, may want to consider purchasing a wrecked electric vehicle, such as a Nissan Leaf, Renault Zöe, or ???

Production parts from Volkswagen’s e-up! can be used with a Kassel single-speed gearbox and Brunswick battery system components. This provides old VW Beetles, and potentially other related products, with 60 kW of power. The battery system can be built into the underbody and consists of up to 14 modules, each with a capacity of 2.6 kWh, providing up to 36.8 kWh. This would give an old beetle a new total weight of about 1 280 kg, allowing an acceleration to 50 km/h in just under four seconds and to 80 km in just over eight seconds. The top speeds is 150 km/h, with a 200 km range. Unfortunately, Volkswagen has misunderstood makers, and wants customers to use conversion specialist eClassics in Renningen, near Stuttgart, Germany.

An alternative for rear engined air-cooled Volkswagens, including Karmann-Ghias, and Porsches, is Zelectric. Once again, they “build to order”, rather than allowing people to undertake the work themselves.

General Motors, however, is offering a GM eCrate kit, although there are serious issues, especially related to the battery pack. It seems to be the driveline from a Chevrolet Bolt, slightly repackaged. An even more accessible manufacturer is EV West, which seems to be catering to the DIY market. Note: I have not used any of these products, and cannot comment on their quality or suitability for any purpose.

RBW Electric Roadster: A Tidbit

A RBW Electric Roadster, based on a MGB body shell from the 1960s, but with a modern electric driveline, Photo: RBW Electric Classic Cars

When enthusiasts comment on sports cars they commonly show their prejudices in their first sentence. This enthusiast is no exception. I cannot hide my delight that the age of the ICE (internal combustion engine) sports car is ending. Long live the electric sports car!

What seems to be happening is that people are taking their favourite 1960s vehicle bodies and fitting them with an electric power-train. Sometimes these bodies are real, with steel parts that have had sixty years to rust. At other times these bodies are constructed in fibreglass, original if available or a replica if not. Presumably there are also carbon-fibre replicas. Many of the drivelines come from Teslas, or other electric vehicles, that have been totally damaged in an incident.

RBW Electric Classic Cars takes a different approach. Recently, they have produced a prototype of a sports car based on a MGB.

The body shell is new, produced under licence to the original specifications, by British Motor Heritage, of Witney, in the Cotswold. It is powered with a patented driveline system, incorporating three years of development by RBW, Continental Engineering Services (CES), and Zytek Automotive, a 100% owned subsidiary of Continental Engineering Services. This driveline is derived from Formula E technology. All three companies are based in Lichfield. While the electric motor is placed at the rear of the car, a lithium-ion battery pack is located in the abandoned engine room, giving a balanced weight distribution.

The front and rear suspension consist of independent coilovers. The brakes, feature discs and callipers, but also integrate regenerative braking technology.

While the interior features a 7″ dashboard display with wi-fi-enabled navigation, the system seems underwhelming, at least to a computer scientist.

Top Speed80 mph = ca < 130 km/h
0-60 mph = ca 0-100 km/h9 s
Range160 miles = ca 260 km
BatteriesSix Hyperdrive Lithium-ion battery packs
Power Output70 kW
DC Charging3.0 kW
Recharge Hours8 hours
Electrical and related characteristics of the RBW Electric Roadster.

Thirty examples of the RBW Electric Roadster will be produced, starting in early 2021. Prices will start from £90 000, plus taxes, with an initial £5 000 deposit.

Zetta CM1: A tidbit

The Zetta City Module 1 (CM1) is the first Russian built EV to enter production, according to Automotive Logistics. Unfortunately, detailed information is difficult to access. Even the English version of the Zetta company site fails to mention the CM1, devoting its content to technological issues of its drive train, especially the in-wheel = in-hub induction motors. However, some information is available from Russian Auto News.

The modular approach used by Zetta means that different modules can be built for different purposes, goods as well as person transport. Some of these will be mass produced focussing on common needs. This is the case of the CM1. Others may have more limited appeal, such as outfitting a vehicle to accommodate a person with disabilities, who has very specific and individual needs. Yet flexibility is not the only attribute. The Zetta is also technologically efficient, economic and – to repeat that so-often misused term – ecological.

The in-hub drive train is exceedingly important for Zetta. Zetta CEO Denis Schurovsky says “Summer and winter validation has shown us that induction motors can endure road dynamic stresses. They are resistant to chemicals, dust, water, etc. All wheels are connected to a single management system that simulates electric ABS and ESP with high recuperation capability.” Each in-hub motor is rated at 20 kW, for a total of 80 kW, a respectable power for such a small vehicle.

The CM1 has a length of 3 030 mm on a 2 000 mm wheelbase, and with a width of 1 270 mm and height of 1 600 mm. It is configured as a four-seater. Inside EVs makes a point that the car is just 340 mm longer than a Smart Fortwo, and that the seating must only be for children in the back. This misses the point entirely that an EV with in-hub electric motors will use space much more efficiently than an ICE (internal combustion engine) designed vehicle. Top speed is 120km/h and battery capacity ranges between 10kWh and 32kWh, for a range of between 200 and 560 km. Depending on the battery pack selected, the weight of the vehicle should be between 500 and 700 kg.

About 90% of the vehicle content is Russian. Much of the remainder is in the batteries, imported from China. The vehicle has been in development since 2017.

At a price of €5 300, Zetta CM1 claims to be the cheapest EV in the world. The vehicle has been developed by Russian Engineering and Manufacturing Company (REMC) in Toliatti/ Togliatti, the Russian city named after Italian Communist Party Leader Palmiro Togliatti (1893 – 1964). Estimated production is 15 000 vehicles a year.

And so to the question many readers will be asking, would I buy one? I would like to answer yes, especially after a theoretical regret at prioritizing a Japanese Subaru Justy four wheel drive in 1986, instead of the cheaper Russian Lada station wagon (VAZ-2104) or its similarly priced, but considerably larger and more powerful 4×4 off-roader, the Lada Niva (VAZ-2121). Andy Thompson in Cars of the Soviet Union (2008), states that Lada “gained a reputation as a maker of solid, unpretentious and reliable cars for motorists who wanted to drive on a budget.” It is my hope that the Zetta will offer purchasers a similar, positive experience. Unfortunately, the answer will probably be no, and I will be unable to engage in the one-upmanship that comes from owning a €5 300 EV, capable of doing the same basic driving tasks as a €53 000 (or more) Rivian R1S or Tesla Model Y.

Oatly & Einride: A tidbit

Oatly has devised a process to provide a vegan alternative to milk. Now it is concentrating on making that process more sustainable, but reducing CO2 emissions. Artwork: Oatly.

My personal transition from omnivore to vegan/ vegetarian is proceeding almost as slowly as my transition away from driving a diesel to an electric vehicle. One positive change, is that we purchase our eggs and milk (and some honey as well as produce) from neighbouring farms, rather than grocery stores.

I asked my personal shopper to add some Oatly products onto her shopping list. Instead, she invited me to help her shop at the local Co-operative in Straumen. Thus, I was able to purchase one litre (about a quart) of havredrikk kalsium (oatmilk calcium). Unfortunately, I was unable to find the other products I wanted to try: havregurt vanilje (oatgurt vanilla); havregurt turkisk (oatgurt Turkish) and iMat fraiche (Oat creme fraiche).

Oatly is a Swedish vegan food brand, producing dairy alternatives from oats. Based on research at Lund University. The company’s enzyme technology turns oats into a nutritional liquid food suitable for the human digestive system. The company operates in southern Sweden with its headquarters in Malmö, with a production & development centre in Landskrona. The brand is available in more than 20 Asian and European countries, Australia, Canada and USA.

Oatly claims to be a sustainable food manufacturer. Artwork: Oatly

Oatly also tries to be sustainable, by reducing its contributions to global warming. They also produce a sustainability report. It shows that almost half of Oatly’s contribution to greenhouse gasses comes from the cultivation of ingredients, a quarter from transport, 15% from packaging and 6% from production (p. 26).

Oatly is not perfect. For example, there has been some controversy about it selling oat residue to a pig farm. On the other hand, it has benefited from two publicity attacks. First, Arla, the Swedish dairy company, attempted to discourage people from buying vegan alternatives to cow’s milk (mjölk in Swedish) using a fake brand Pjölk. Oatly responded by trademarking several fictitious brands Pjölk, Brölk, Sölk and Trölk and began using them on their packaging. Second, the Swedish dairy lobby LRF Mjölk, won a lawsuit against Oatly for using the phrase “Milk, but made for humans” for £ (sic) 100 000. When Oatly published the lawsuit text, it lead to a 45% increase in Oatly’s Swedish sales. Once again, this seems to suggest that there is no such thing as bad publicity.

On 2020-05-14, Oatly and Einride announced that Oatly will use four 42-tonne vehicles starting 2020-10 to transport goods from production sites in southern Sweden, using Einride’s Freight Mobility Platform. This is estimated to lower its climate footprint (on the affected routes) by 87% compared to diesel trucks: 107.5 tonnes of carbon dioxide per year per truck, about 430 tonnes per year in total, or 2 100 tonnes throughout the five year duration of the contract.

Part of the solution involves optimizing electric trucks operations using computer-controlled logistics with Einride’s Freight Mobility Platform software. Accurate transport planning allows 24 tonnes of goods to be transported an average of 120 kilometers without charging. It involves optimizing and coordinating drivers, vehicles, routes as well as charging. On a typical shift, three drivers will drive four different trucks. This means that one truck is always charging, which places less strain on batteries, and making the operation more durable and economical.

Oakly’s 42-tonne Einride trucks will feature a DAF glider, with Emoss driveline and Einride software. Photo: Einride

This initial iteration involves a DAF glider (a vehicle without a driveline/ prime mover/ power source, fitted with a Emoss motor. Future iterations may involve a Einride Pod, previously referred to as a T-pod.

Tesla Cybertruck: A tidbit

Visitors to the Tesla Cybertruck webpage are greeted with an elongated version of this photo of the Cybertruck ptototype. (Photo: Tesla)

The term pickup is of unknown origin, but was first used by Studebaker in 1913 and by the 1930s had become a generic term for a light-duty truck having an enclosed cab and an open cargo area with low sides and tailgate. In North America, the pickup is mostly used as a passenger car and accounts for about 18% of total American vehicle sales, in part because it benefits from lower fuel and emission control regulations, and tax breaks from the IRS. Full-sized pickups and SUVs account for more than two-thirds of their global pretax earnings of GM, Ford and Fiat-Chrysler, because of their high prices and profit margins.

Elon Musk unveiled Tesla’s first pickup, the Cybertruck, in Los Angeles 2019-11-21. It is battery-powered. Tesla’s stated goal is to displace a large portion of fossil fueled light trucks sold.

Cybertruck’s styling is anything but charming, and many commented that the presentation setting, in both time and place. was that of the original Blade Runner. However, the Cybertruck has many positive characteristics including a durable exterior shell made of a light-weight titanium alloy, for passenger protection. It is also claimed that every component is designed for strength and endurance. These are important considerations in a truck.

Specifications, both estimated and revealed: Vehicle mass = 2 700 kg/ 6 000 lbs; payload = 1 600 kg/ 3 500 lbs; power = 570 kW/ 775 HP; storage space = 2 830 litres/ 100 ft3 ; vault aka bed length = 2 meters/ 6.5 feet; ground clearance = up to 410 mm/ 16 “; approach angle = 35 degrees; departure angle = 28 degrees; seating = 6 in two rows.

Characteristics that vary, depending on the model, are included in the table below.

1- motor 2-motor3-motor
Drive wheelsRWDAWDAWD
Range km/ miles400/ 250500/ 300 800 / 500
0 -100 kph; 0 – 60 mph in s< 6.5< 4.5< 2.9
Top speed kph/ mph177/ 110193/ 120209/ 130
Towing capacity kg/ lb3 400/ 7 5004 500/ 10 0006 350/ 14 000
Price (to closest US$ 1 000)40 00050 00070 000

Compressed air is an important feature of the Cybertruck. It allows for a self-levelling suspension which compensates for variable load. In addition it provides power for pneumatic tools. On-board power inverters supply both 110 and 220-Volt electricity, for electrically powered tools.

At the presentation, Tesla’s armoured glass failed to work as intended, when a steel ball thrown by design chief Franz von Holzhausen shattered two windows in two attempts. The presentation ended with a Tesla Cyberquad electric ATV being loaded onto the truck vault, using built-in tailgate ramps. The Cyberquad was then plugged into the Cybertruck’s onboard power outlet, to charge it.

My hope is that many people currently buying Ford F-150s, Chevrolet Silverados, Rams and other ICE pickups, will be encouraged to buy either a Cybertruck, or a more conventional looking Rivian R1T, or other suitable electric vehicles. Personally, I am not part of the pickup culture. My Brenderup 4310S utility trailer meets almost all of my freight transport needs, and should do so for the rest of my life.

The Charm of Endurance

The Workhorse W-15 Hero, renamed the Lordstown Motors Endurance. Photo: Workhorse Group.

In 1998, Workhorse Custom Chassis was founded in Cincinnati, Ohio to take over production of General Motors’ P30/P32 series stepvan and motorhome chassis. By 2005, the company was taken over by Navistar International, its supplier of diesel engines. Navistar then closed the plant in 2012.

AMP Electric Vehicles bought the company in 2015, and changed its name to Workhorse Group Incorporated, scattering attention on electrically and ICE powered delivery vans, buses and recreational vehicles.

In 2016, Workhorse introduced a W-15 Hero prototype, an all-wheel drive plug-in pickup. It used custom battery packs, to provide power to an electric-drive, with a range oft 80 miles/ 130 km. These batteries were housed underneath the vehicle to save space and provide more payload capacity. Confusingly, a BMW three-cylinder generator/ range extender was also provided, making this a hybrid ICE vehicle, rather than a pure battery electric. The vehicle was be built with four motors — one for each wheel — to deliver all-wheel drive. It also had outlets to run power tools off the vehicle battery.

In 2018, Workhorse scattered attention again, by announcing Surefly, its two-seat gasoline/ electric hybrid eVTOL (vertical takeoff and landling) octocopter.

On 2019-11-07, the newly constituted Lordstown Motors Corporation purchased the 576 000 square meter Lordstown Ohio assembly plant from General Motors. This plant originally opened in 1966. Confusingly, some reports say Workhorse Group has a 10% stake in this plant, others state that it has no financial involvement.

The plant has been a political liability for GM since its 2018 announcement that it would not use the facilities. This became an immediate political liability for Donald Trump, who earlier had discouraged supporters from selling their homes in Lordstown because of all the jobs he would bring back to the area

Steve Burns, previous CEO of Workhorse, and current CEO of Lordstown Motors, is fundraising to convert the plant so it can manufacture electric vehicles. What used to be called a Workhorse W-15, is now being called a Lordstown Motors Endurance, targeting pickup truck fleet buyers.

Meanwhile, Workhorse Group is bidding on a contract to make plug-in mail trucks for the U.S. Postal Service. Even if Workhorse wins the postal contract, it is unclear if the Lordstown plant would build those vehicles. Lordstown Motors does have an agreement to transfer the 6 000 existing pre-orders for the W-15/ Endurance from Workhorse Group to Lordstown Motors for production.

Burns has stated that Workhorse and Lordstown Motors share intellectual property related to electric-drive systems.

Production of the W-15/ Endurance is dependent on successful funding. If sufficient funds were raised, Burns said he would work with the UAW (United Auto Workers Union) to hire staff who didn’t transfer to other plants. Burns wants experienced vehicle assemblers to build the trucks.

Lordstown Motors has the money to buy the plant and work on the vehicle, but needs more money to continue development, conduct crash and safety testing, get the truck approved for sale and to retool the factory.

Lordstown Motors is not the only electric pickup attracting attention. The Rivian R1T pickup is possibly the top contender, is fully electric, has an exciting design that it shares in part with its R1S SUV sister, a large fan base willing and able to purchase vehicles, financing under control, and production facilities secured in Normal, Illinois. Ford has also announced its own fully electric version of its F-150 pickup. Yet, the pickup everyone is wanting to learn about is the Tesla Cybertruck, to be unveiled in Los Angeles, 2019-11-21. Which is why anything about the Workhorse W-15 Hero/ Lordstown Motors Endurance had to be pushed out now.

The Charm of a Uniti

The production model Uniti One, available in three gray colours. (Photo: Uniti)

Uniti began life as an open innovation project at Lund University in 2015, then emerged as a Swedish electric vehicle startup in 2016. It is developing an advanced city car. What first attracted my attention, was the replacement of the steering wheel with a joy-stick. Most of the mechanical system appeared equally innovative, and claimed to be sustainable, whatever that means.

Prototype development was funded through an equity-crowdfunding campaign on the Swedish platform FundedByMe, with 570 investors contributing €1,227,990.

The design mandate of the Uniti One seems to be in a state of flux. At one time, it was a relatively unsafe L7e quadricycle. Now, thankfully, it is being lauched as a M1 vehicle requiring crash testing, and more safety equipment. Other details, such as seating arrangements have also been subject to change. It was a side by side 2 seater, before it became one with one person sitting behind another. Now it is launching as a 3 seater, with a driver in the middle in front, with space for two passengers behind. Trunk space is adequate to hold a packed lunch and a charging cable, at 155 litres.

With a 50 kW electric motor and 62 Nm of torque, and a mass under 600 kg, the Uniti One can reach 100 km/h in less than 10 seconds. It has a computer controlled top speed of 120 km/h.

The Uniti One comes with an electrochromatic panoramic roof that darkens automatically to keep the car cool when parked in direct sunlight. Its virtual sun visor darkens the top of the windshield when the sun is in the drivers eyes.

An Android operating system controls the infotainment system and most of the standard features of the car. Voice commands can be issued. Its systems are regularly updated over the air.

A high strength safety cage surrounds the driver and passengers keeps interior deformation to a minimum, in the event of a collision. Other standard safety equipment include driver’s airbag, anti-lock braking, electronic stability control and a tire pressure monitoring system. The Intel MobilEye 6 collision avoidance system provides forward collision and lane departure warnings, speed limit indicator, and warning for potential collisions with pedestrians or bicycles and their riders, in real time.

In its current state, what appeals most about the Uniti One is that much of the equipment is optional, which means that people declining options can end up with a lower cost vehicle. Currently, the base model costs about €18 000, before subsidies. The only options I would insist on would be the Intel Mobileye 6 collision avoidance system (€ 700), winter tires (€ 400) and possibly air conditioning (€ 300). This is not a highway vehicle, so a 150 km range with a standard 12 kWh battery and a slow 3.2 kW charger seem adequate. It seems wasteful to spend €2 800 each on a 24 kWh battery and a 22 kW charger.

In terms of a computer vehicle transporting one person and a lunch bag in an urban environment, this is probably a good choice except, in urban environments there is public transport, which would be a better choice.

That said, my greatest disappointment with the production vehicle is its steering wheel, with no joy-stick in sight.

Uniti One interior, available in gray. (Photo: Uniti)

The Charm of an Einride T-pod

The world premiere of an Einride T-pod, a level 4 autonomous, electric vehicle with a mass of 26 tons, on a public road in Jonskjöping, Sweden. 2019-05-15. Photo: Einride.

Robert Falck, a former Volvo executive, is founder and CEO of Einride. Together with, Jochen Thewes, CEO of DB Schenker, a major logistics company, and Mats Grundius, CEO of DB Schenker Cluster Sweden, Denmark, Iceland, he hosted a world premiere on Wednesday, 2019-05-15.

Einride and DB Schenker entered into a commercial agreement in 2018-04 that includes a pilot in Jönköping with an option for additional pilots internationally.

Einride’s signature product is a T-Pod truck. With a Gross Vehicle Weight of 26 tons, its most notable characteristics are its electric drive train, and autonomous driving capabilities. These two features reduce road freight operating costs by about 60 percent compared to a diesel truck with driver.

However, Einride wants more, a safe, efficient and sustainable road freight transport solution, that can reduce CO2 emissions by up to 90 percent

The T-Pod is level 4 autonomous, the second highest category. It uses a Nvidia Drive platform to process visual data in real time. An operator, sitting anywhere in the world but most probably in Jonsköping, can supervise and control up to 10 vehicles simultaneously. The T-Pod has permits from the Swedish Transport Agency to make short trips – between a warehouse and a terminal – on a public road in an industrial area in Jonkoping, located in central Sweden, at speeds of up to 5 km/h.

In 2018-11, Einride and DB Schenker initiated the first installation of an autonomous, all-electric truck or “T-pod” at a closed DB Schenker facility in Jönköping. It was the first commercial installation of its kind in the world.

On 2019-03-07 the Swedish Transport Agency concluded that the T-pod is able to operate in accordance with Swedish traffic regulations. On 2019-03-11, the agency approved Einride’s application to expand the pilot to a public road, within an industrial area – between a warehouse and a terminal. The permit is valid until 2020-12-31.

Since Einride is primarily a software and operations company, they are seeking a partnership with a truck manufacturing company.

Falck said Einride would apply for more public route permits next year (2020). It was also planning to expand to the United States.

For further information, see: https://www.einride.tech/