EV 2030

https://upload.wikimedia.org/wikipedia/commons/c/c5/EV1A014_%281%29_cropped.jpg
EV1A014, is as rare as a unicorn. 2011-03-29 Photo: RightBrainPhotography (Rick Rowen) Subsequently retouched by Mariordo.

Life is hard; it is harder if you are stupid. John Wayne (Marion Robert Morrison, 1907 – 1979)

Today, I am entering the prophecy business, and, in particular, will be looking at predictions for electric vehicle technology in 2030. Some might question my sanity, or at least my intelligence. Prediction is a double-edge sword. It could result either in adulation (admittedly, a less likely result) or condemnation – perhaps worse (decidedly, more likely). I approach the task fearlessly. If the predictions turn out to be more correct than wrong, rest assured I will remind everyone about it in 2030. If they turn out to be less correct, I won’t bring up the matter again.

Predictions for 2030

  1. New vehicles in advanced economies will be battery electric vehicles.
  2. Dynamic wireless charging along main roads will start becoming standard, in addition to static charging at residences.
  3. Environmentally friendly graphene ultra-capacitors and sodium-ion batteries will start to replace lithium-ion (Li-ion) batteries in most vehicles. Some of these will have a life-expectancy exceeding 1 million km.
  4. Vehicle owners will have a Right to Repair their own vehicles.

Yes, some of these predictions lack millimetre precision. However, here are a few points of clarification …

  1. Different markets will achieve different levels of EV penetration at different times, but EVs in all markets will be on their way to displace internal combustion engine (ICE) vehicles.
  2. Wireless means that plugs will become outdated technology. Dynamic charging refers to charging while a vehicle is in motion. This would probably result in smaller batteries. Commuter vehicles could end up with a battery capacity of about 25 kWh.
  3. The term battery, as used in this prediction, is intended to include other forms of electrical storage, including the use of various types of capacitors.
  4. Right to repair does not necessarily mean a right to do-it-yourself (DIY), it could involve local workshops, run by certified mechanics, or even specialists, especially when high voltage is involved.

Previous predictions

Between 1996 and 2002, I took a lot of chemistry and chemical engineering courses, including some related to physical chemistry. At the time I wrote a paper (not lost, just not found) about fuel cells, the technology of the future! At about the same time, General Motors had proven to the world, with the EV1, that there was no future for electric vehicles. The EV1 “was the first mass-produced and purpose-designed electric vehicle of the modern era from a major auto-maker and the first GM car designed to be an electric vehicle from the outset.”

Unfortunately, General Motors was wrong. The documentary film Who Killed the Electric Car? (2006) explains and condemns the short life and brutal death of the EV1. It puts GM in a negative light. There were 660 Gen(eration) I EV1 cars produced, followed by 457 Gen IIs. While a few vehicles were disabled and given to museums and universities, almost all the others were crushed, or shredded.

Could I ever own a GM product? Possibly, in a parallel universe where I am converting a Pontiac Aztek, with a defunct engine, to an EV. But not on this planet. Note: the Aztek is appreciated not just for its utilitarian appearance, but especially for its ability to carry standard sheets of plywood, inside.

Some of the 275 people working for Ballard, in Burnaby, British Columbia. Photo: Ballard

I was also wrong about fuel cells taking over the world. Perhaps this too was wishful thinking. With Ballard Power located in Burnaby, the neighbouring municipality to New Westminster, I was well aware of their proton-exchange membrane (PEM) technology, and thought that this would dominate future vehicles. PEMs, more generally, was the topic of my missing paper. Looking at Ballard’s website in 2022, they have not lost their optimism, but seem more focused on heavy transport (buses, commercial trucks, trains, marine vessels) and stationary power applications.

Ulf Bossel (1936 – )has been arguing against Hydrogen technology since 2006. He concluded that Hydrogen technology is unlikely to play a major role in sustainable road transport. This has met with considerable scepticism. Recently, Patrick Plötz, in Nature Electronics 5, 8–10 (2022) confirms that hydrogen fuel cell vehicles, (HFCV), including commercial trucks, are not likely to catch up to battery EVs. Part of the reason is explained in the following diagram, originally developed by Bossel.

Ulf Bossel’s original argument again hydrogen, shown in a diagram.

The diagram illustrates that FCEVs are three times less efficient, as BEVs. In addition, they require an entirely different (and more expensive) investment in infrastructure. For BEVs, every electrical outlet is a potential charging station.

As I write this, a message from my daughter, Shelagh, California resident and owner of one half of a BMW i3 EV, has just ticked in on the teletype: “I read that 84% [83.7%] of all vehicles sold I Norway in January we’re electric[.]” This statistic refers to the 6 659 battery electric vehicles and the 1 hydrogen fuel cell vehicle sold. Hybrids are excluded, or more correctly, appropriately included with ICE vehicles in the other 16.3% of vehicles sold. Here, there were 910 rechargeable (or plug-in) hybrid vehicles, 175 with power from gasoline and 212 using diesel. These add up to a total of 7 957 vehicles. As the statistics show, there is no longer a sizeable market for ICE vehicles in Norway. From 2025-01-01, all new vehicles under 7.5 tonnes, will have to be EVs (or use fuel cells).

Dynamic charging

If Norway is ahead in cars, Sweden is ahead in roads. Sweden launched the first public electric road in 2016. The electric road outside Sandviken and Gävle utilises overhead lines, which powers freight trucks while driving. eRoadArlanda, outside the Arlanda Airport, provides a test track to generate knowledge and experiences about electric roads.

This was followed up with Evolution Road, a conductive, surface mounted electric road system to increase knowledge about electric roads on a 1-km stretch of road at Getingevägen in Lund, in southern Sweden.

On the Swedish, Baltic Sea island of Gotland, ElectReon is testing a dynamic wireless charging system on a 1.65-km public road, as part of the Smartroad Gotland project. A video demonstrates the construction process. A battery electric (BEV) long-haul truck was the first vehicle to be charged wirelessly. It drove on a 200-meter road segment, at various speeds of up to 60 km/h, averaging a transfer rate of 70 kW, while showing that snow and ice do not affect charging capabilities.

Modern electric road systems provide a number of benefits: the elimination of downtime for recharging – especially important for transit buses, delivery vans, long-haul trucks and robotaxis, reduction of battery sizes by 50–80 per cent (yes, my unscientific estimate is that 25 kWh batteries will be the standard size on EVs once electric roads become common), greater energy efficiency, because smaller batteries mean lighter vehicles, and, most types of electric vehicles: cars, trucks, utility vehicles and buses will be able to use the same system.

Seven years after Sweden, the first stretch of road in the United States to wirelessly charge electric vehicles while in motion will begin testing in Detroit. This electrified road will be up to 1.6 km long, and allow EVs to charge whether they’re stopped or moving. It is hoped that this in-road charging will encourage widespread EV adoption, by reducing consumers EV hesitancy. Michigan state will contribute $1.9 million toward the project, which will also be supported by Ford Motor, DTE Energy and the city of Detroit.

Israel based ElectReon is world leading in terms of dynamic wireless charging. While there are other companies hoping to be part of the solution, they have done little to prove their capabilities. Most potential suppliers of charging equipment are opting for static wireless charging systems in places like parking garages, taxi stands, and bus or truck depots. They should probably take a reality check. Nobody wants to stand still to charge, is the option is to charge while on the move.

It should also be mentioned that there are ongoing dynamic wireless charging pilot projects in Germany, Italy and Israel. All of these use induction technology with on-board receivers facilitating the transfer power from coils buried underground to the vehicle. ElectReon estimates that the cost of a receiver will be reduced to between $1 000 and $1 500, when installed by an EV manufacturer. Another approach is to tie the cost of the receiver to a monthly (?) subscription, that also provides the power.

Terminology.

I find it extremely interesting that one of the celebrated proponents of the International System of Units (SI) was the American electrical engineer, George Ashley Campbell (1870 – 1954). Yet, on an almost daily basis so many Americans, Britons and Canadians (but few others) want to retain all or parts of an antiquated, inconsistent measurement system. Readers have no doubt noticed the avoidance of conventional/ non-metric units, and the usage of SI units on this weblog. However, in this post, some non-SI units will be used. These units are commonly used with EVs throughout the world. I ask for the indulgence and forgiveness of readers.

If one really wants to be correct and use internationally accepted SI units, energy is measured in joules (J). There is also a distinction made between specific energy = massic energy = gravimetric energy density, which specifies energy per unit mass, as in J/kg, and energy density, which specifies energy per unit volume as in J/l (litre). Despite this clear demarcation, most people seem to engage in terminology convergence. They refer to energy density, but express it in terms of watt-hours per kilogram (Wh/kg). Purists may want to remember: 1 Wh = 3600 J = 3.6 kJ.

Batteries and ultra-capacitors

Batteries have come a long way from the invention of the lead-acid battery in 1859 by Gaston Planté (1834 – 1889). Global sales in 2020 = $ 50 billion. These are still ubiquitous, cheap and reliable, but toxic. Finding out exactly how much lead ends up poisoning the environment is difficult. The Battery Council, with close ties to those with vested interests in battery production, typically estimates that 99% of lead is recycled. The United States Environmental Protection Agency has a less optimistic, and more varied estimate that ranges from 60% to 95%. In addition, lead-acid battery recycling is the world’s most deadly industrial process, where an estimated 2 to 4.8 million disability-adjusted life years are lost annually and globally.

In 1989 Sony commercialized the Li-ion battery, and it has become the dominant battery technology. It is the first choice for Evs, stationary batteries, and mobile devices. One challenge with lithium technology, is that it has so many patents and intellectual property rights associated with it, that it becomes problematic to make anything – as a startup. Someone is sure to claim that there is a patent infringement.

Another challenge is availability. Lithium mainly comes from Australia, Chile, China and Argentina. It is also found in smaller quantities in many other places. Extraction is difficult and polluting. It currently costs about $ 5 000 / tonne. Other resources used in lithium (Li) batteries are also problematic. Cobalt (Co), especially. EV batteries can have up to 20 kg of Co in each 100 kilowatt-hour (kWh) pack, or up to 20% of its mass.

There are many other Li-ion battery manufacturers who are also attempting to make new viable products, many with a focus on solid-state Li-ion technology. The reason for this focus is to reduce mass = weight. Unfortunately, this type of battery is almost always years away from being introduced, in part because other battery technologies are always moving the goal posts.

Some social media influencers, such as Sandy Munro, claim that one of the most important Li-ion battery developments in the world at the moment, is taking place at Our Next Energy, Inc. (ONE), located in Novi, Michigan. They have developed an experimental battery, Gemini 001, that stores over 200 kWh of electrical energy, with an energy density of 416 Wh/l, using pouch technology.

Another important development is taking place at Gruber Motors in Phoenix, Arizona. The company is especially important for saving the lives of innumerable bricked Tesla vehicles. It describes itself as an independent Tesla service organization providing engineering and aftermarket support. I refer to Pete Gruber as a guerilla technologist. In a video, he describes their graphene ultra-capacitor cells that now exceed 1 000 km range, and could soon reach 1 600 km. They are estimated to allow about 43 000 charging cycles, with each charge taking about 15 minutes, providing a battery potentially capable of propelling a vehicle exceeding 43 million km, and last 100 years. Graphene is made of a single layer of carbon, one of the most common elements.

The technology upon which the Gruber graphene capacitor is based could be made by Skeleton Technologies of Tallinn, Estonia. This company is providing graphene ultra-capacitor technology to many different industries, including high power applications for automotive, heavy transportation (rail, especially), marine, grid (wind turbines, for example), aerospace, and manufacturing. These use curved graphene sheets to produce mesospores that are accessible to and wettable by ionic electrolytes at voltages up to 4 V. This provides a specific energy of about 85.6 Wh/kg. One characteristic, appreciated in climates with winter, is its ability to operate in cold temperatures, without any performance loss. More information, about a number of technical topics and more, is available from their download page.

Chemical abundance is important when determining the suitability of future technologies for electric vehicle batteries. Here WebElements values will be used for comparative purposes, typically expressed in parts per million (ppm) by mass.Readers who want it expressed in terms of ppm by mole, are encouraged to undertake their own calculations.

Sodium (Na), is the 6th most common element in the Earth’s crust, at 23 000 ppm. In contrast Li ranks 33rd, at 17 ppm. This makes Na over 1 350 times more abundant than Li. This is reflected in its price, at about: $ 150 / tonne. Carbon (C) ranks 17th, at 420 ppm. Not only is this almost 25 times more abundant than Li, its existence in the atmosphere as CO2 makes it an ideal target for battery production.

Na-ion batteries were developed at about the same time as Li-ion batteries. They are suitable for stationary power and short range EVs. That is, applications where energy density is not an issue. For example, energy storage for renewal energy sources such as solar and wind. However, they are not really suitable for hand-held devices.

Like a Li-ion battery they have cathode, anode, porous separator, electrolyte. The same engineering and production methods can be used, but with different materials.

This does not apply to some of the earlier sodium based batteries. Some of the first research projects with sodium batteries were done at the Ford Motor Company where Joseph T. Kummer & Neill Weber published A Sodium-Sulpher Secondary Battery (1968). They state an energy density of 330 Wh/ kg, in contrast to 22 Wh/ kg for a lead acid battery. Later, others have considered this energy density an exaggeration, and have reduced it to about 150 Wh/kg in the real world. The most negative characteristic of this battery was its high operating temperature, 300 – 350 C.

The sodium-nickel-chloride battery, developed under the Zeolite Battery Research Africa Project, started in South Africa in 1985, and commonly called the Zebra battery. This is also a rechargeabe molten salt battery, that distinguishes itself from the Sodium Sulfer battery by it use of commonly available materials. It is simpler, safer, cheaper, but less energy dense, at about 90 to 120 Wh/kg.

From 2010, sodium batteries were developed that could operate at room temperatures. Typically, they have an anode made of hard carbon = charcoal; an electrolyte with low viscosity, high conductivity and electrochemically stable, (typically sodium salts dissolved in organic carbonate); a cathode, often a more problematic choice, but with a focus on sodium layered oxides, with crystalline structure, similar to lithium cobalt oxide (LiCoO
2).

In 2020, Washington State University and Pacific Northwest National Laboratory develop a more powerful sodium battery with the potential to produce 160 Wh/ kg. Other producers of So-ion batteries include: Faradion (UK), Altris AB (Sweden) with a Prussian blue cathodes, HiNa (China), and Natron Energy (USA) with Prussian blue cathodes. Prussian blue cathodes typically offer 95% charge retention after 10 000 cycles; However they do not function well in the presence of moisture, hence Prussian white.

Contemporary Amperex Technology Company Limited (CATL) has also developed a sodium battery. It has an anode made of hard carbon with a unique porous structure that lengthens the cycle lifetime and allows for more sodium-ion movement. The cathode is made of Prussian white, an analogue of the pigment Prussian blue. Energy density is currently 160 Wh/ kg, but there is a goal for G2 = 200+ Wh/ kg. Because of CATL’s intereconnection with Li-ion batteries, only a 10 – 30% price saving can be expected from these batteries.

Right to Repair

Relationships with the service departments of automotive dealers, are not always positive experiences. Going back several years now, here is one customer’s experience of a dealership service centre, that has permanently put him off wanting to use such a place. The customer had replaced original, inferior wiper blades with premium blades that were still in excellent condition when he delivered his vehicle in for servicing. When, the car was picked up, those premium blades had been replaced with inferior blades, and the customer was charged a price for them that exceeded those of the premium blades. When the customer requested the inferior blades removed, and replaced with his premium blades the dealership refused, citing that the manufacturer, required them to perform servicing to the letter, in order not to void the warranty. Wiper blades were part of the required service. The customer then asked for the premium blades to be returned to him, but the dealership could not find them.

Some weeks later, an indicator light showed that the vehicle needed immediate servicing, and should not be driven. The dealership was contacted, and they picked up the vehicle, transporting it on the back of a tow truck (a 70 km round trip from the workshop). It turned out that the dealership had forgotten to reset the servicing interval when they undertook the service, indicating that they were not following the servicing guide to the letter, as they had previously claimed. They then had to transport the vehicle back to the customer on the back of the same tow truck, two days later.

Shortly thereafter, a fuel injector failed on the vehicle (for a second time). Once again, a tow truck was needed to transport the vehicle, which was at the customer’s place of work. This time it involved a 160 km round trip, followed by a 70 km round trip after replacement. The fuel injector had to be replaced under warranty, and the customer wondered if the dealership had failed to do something else during the servicing, that had resulted in this failure. Some months later, the vehicle warranty expired, and the customer ended his relationship with the dealership. These incidents were so traumatic that the customer vowed never to buy that brand of vehicle again.

With EVs a different experience of service may be offered. EVs have fewer parts in total, and fewer moving parts, the operating environment is less extreme because there is no combustion to produce excessive amounts of heat. Thus, EVs typically require less service than their ICE counterparts. While legacy auto-makers may attempt to continue on as before, EV startups will probably be less reliant on dealerships, and more reliant on websites, for sales. They may also attempt to approach service and repairs in a different way.

Take Sono Motors GmbH as an example. Sono is a crowdsourced German company working on the development of the electric solar car, the Sion. It will have solar cells embedded in the plastic body panels on the roof and sides. Electricity generated will be fed into the traction battery, potentially providing about 5 000 km of range per year. Over an eight year period, over 260 000 vehicles are expected to be produced in Trollhättan, Sweden, at the National Electric Vehicle Sweden (NEVS) production facility. NEVS is a Swedish electric car manufacturer that acquired the assets of Saab from a bankruptcy estate in 2012.

There are currently about 13 000 customers waiting for production of the Sion to start. Potential purchasers are distributed (almost) randomly throughout Europe. This could mean that it would be very expensive for Sono to set up service centres. Fortunately, they have opted for something different: Low Cost Maintenance, with a 3-step maintenance system they claim will keep repair/ servicing costs as low as possible.

  1. Standard replacement parts that can be replaced by almost anyone. That is, without needing much prior knowledge, these can be replaced by owners/ users. Sion says, DIY is back!
  2. A workshop handbook, will allow an extensive network of independent mechanics, to undertake work that is beyond the capability of ordinary people. This is the essence of most Right to Repair legislation.
  3. For repairs involving high-voltage or body parts, Sono intends to cooperate with an established European service provider.

Once one auto-maker has shown the viability of this approach, it will be difficult for others to avoid step #1. As shown previously, one of the challenges facing dealerships is that they are not behaving particularly professionally, when it comes to servicing vehicles. Another challenge in the future, is that there will be a shortage of workers available. Work that can be eliminated or reduced should be. Ron Hetrick explains what is happening in USA, but the same applies to other advanced economies.

Currently, I rank Sono Sion as my third choice for an EV. Above these are two families of MPVs: the upcoming Renault Kangoo, and its badge engineered Nissan Townstar, along with an upmarket Mercedes EQT; and the Stellantis MPVs: Citroën Berlingo, Peugeot Rifter and Opel Combo, badge engineered variants.

EV Tipping Points

A-Ha keybordist Magne Furuholmen, in the driver’s seat of a Fiat Panda EV, with lead singer Morten Harket, guitarist Paul Waaktaar-Savoy and environmentalist Frederic Hauge in front (Photo: Bellona)

In 1989, A-ha lead singer Morten Harket and keyboardist Magne Furuholmen, were in Switzerland with Norwegian environmentalist Frederic Hauge, attending an EV conference. After inspecting a privately converted Fiat Panda EV, Harket and Furuholmen bought the car, and took it back to Norway. Norwegian regulations at the time, prohibited the registration of electric cars. Since it was fitted with a propane-fuelled heater, it could be, and was, registered as a recreational vehicle/ motor home.

The Panda was enthusiastically driven around Oslo, without paying local road tolls and ignored all subsequent fines. This resulted in an enormous amount of publicity, in Norway. It also resulted in the car being confiscated, and auctioned off, with yet more publicity. However, since no-one else wanted to buy the car, the original owners bought it back again. This cycle repeated itself several times. The fine was NOK 300 each time, and they bought the car back each time for NOK 200.

In 1996, Norway’s Government abolished road tolls for EVs. This was a key incentive that started an EV policy, that resulted in generous subsidies and other incentives, leading to a situation where over 80% of all new light vehicles are EVs in 2022.

Tim Lenton, at the University of Exeter, is quoted in the Guardian as saying: The only way we can get anywhere near our global targets on carbon emissions and biodiversity is through positive tipping points. People, whether they’re business leaders, policymakers or whatever, know what needs to change. The question is how? It’s starting to happen, but it’s not going quick enough. The complexity [of the climate and ecological crises] can be paralysing,. I wanted to show that, if you understand the complexity, it can open up windows of opportunity to actually change things.

An analysis of this problem has been published in Global Sustainability.

Predictions, in general

I hope that my legacy as a person is not dependent on my ability to predict the future. Rather, I hope it is related to my ability to love a few people, and to show concern for the well-being of all of humanity and the planet more generally, now and into the future. Hopefully, I have learned something, including humility, from my years of living.

When it comes to judging the success or failure of predictions, I like to turn to the world of film, especially works set in the future. I am not a fan of either Gene Roddenberry’s (1921 – 1991) Star Trek, despite its debut on Canadian CTV on 1966-09-08 and set in the 23rd century, or George Lucas’ (1944 – ) 1977 Star Wars and successive films, taking place a long time ago in a galaxy far, far away, which excludes it from being set in the future. More appreciated are: Lucas’ 1967/ 1971/ 1977/ 2004 THX 1138; Stanley Kubrick’s (1928 – 1999) 2001: A Space Odyssey (1968), and A Clockwork Orange (1971); Richard Fleischer’s (1916 – 2006) Soylant Green (1973) set in 2022; Michael Anderson’s (1920 – 2018) Logan’s Run (1976), set in 2274. Perhaps most of all, I admire Ridley Scott’s (1937 – ) Blade Runner (1982), set in Los Angeles in 2019, 37 years into the future, and currently three years in the past, if only because of its inability to predict the advent of the cell phone.

Yet, of these, it is Soylant Green that is the most haunting, and to where the political class seems to be leading the world: dying oceans, excessive humidity, pollution, overpopulation, depleted resources, poverty and – ultimately – euthanasia.

If one focuses on one random member of the political class – no better nor worse than many of the others – Joe Biden (1942 – ) born in Pennsylvania, the state where USA’s first oil well was drilled in 1859. He grew up in Delaware, where his father ultimately worked as a successful used-car salesman. In 2018, the US became the world’s largest crude oil producer (15%), exceeding Russia and Saudi Arabia. In 2021, some sources state that this resulted in 10.3 million jobs, and 8% of USA’s gross domestic product (GDP). Oil companies are major contributors to politicians, in the expectation that they will act positively to the needs of these companies and their shareholders. Chevron made 28% of its $4.9 million in political contributions to Democratic candidates and party, while Exxon made 41% of $1.7 million contributions to them.

Not everyone is happy with him. It is very strange that Biden can mention the electrification efforts at GM and Ford, without mentioning Tesla. Unfortunately, this could be because he is more interested in the profits of the oil industry, that are dependent on ICE vehicles from GM, Ford and others. Biden was willing to auction off 320 000 square kilometres of oil leases in the Gulf of Mexico, making it the largest sale in US history, although only slightly less than 7 000 square kilometres were ultimately leased, yielding $192 million. So far, Biden is approving 320 drilling permits on public land each month, exceeding Trump’s 300 a month.

This support of the oil industry does not in any way mesh with a necessary reduction in greenhouse gas emissions, that climate in crisis requires. Indeed, Biden’s environmental policy, if it exists, is difficult to understand. It seems to begin and end in words. The stated aim is a halving of greenhouse emissions by 2030, with them reaching net zero by 2050.

USA has many American EV manufacturer, to be appreciated. Aptera has the most efficient EVs; Arcimoto is making fun utility vehicles (FUVs); the Fisher Ocean should appeal to anyone wanting a conventional SUV; Ford has had great success with its Mustang, and sees promise in its upcoming F-150 Lightning; Rivian has started to provide adventure pickups and SUVs; Tesla is making the most EVs; and, last and least, General Motors is making an excessive, large and brutal Hummer EV that effectively shows that not all EVs benefit the world!

As John Wayne says, life is hard. It will be harder still for all people, smart or stupid, if politicians stupidly fail to implement environmental policies that stop the current rise in temperatures. This includes the elimination of fossil fuels, and fossil plastics, that are burnt as fuels once their few seconds of shelf-life are finished. The four predictions discussed in this weblog post, are all dependent on politicians enabling people to make enlightened changes to their ways of life, quickly! Most of those changes will have to take place now in advanced economies. If people alive today don’t start making changes to their lifestyle, the lives of upcoming generations will be immeasurably harder.

Honda e-Cub

A 1958 Honda Super Cub C100 featured a low-floor backbone step-through frame. The inexpensive but light weight plastic front fender and large leg shields, involved the first motorcycle use of plastic. The 17-inch wheels gave the vehicle a stability not found in scooters. The power train involved an automatic centrifugal clutch, 3-speed transmission, and an air-cooled 4-stroke 49 cc OHV engine. Top speed = 64 km/h. Wheelbase = 1 181 mm, Length = 1 781 mm, Width = 569 mm, Mass (wet) = 65.0 kg. Photo: Honda.

The Honda Cub is the best selling motor vehicle of all time, with over 100 million having been made in the years since 1958, when it was launched. Its origins are not in Japan, but in 1956 Europe when Honda co-founders Soichiro Honda (1906 – 1991) and Takeo Fujisawa (1910 – 1988) toured Germany and experienced the popularity of mopeds and other lightweight motorcycles.

Fujisawa was inspired, and wanted to produce a motorcycle for everyone: urban, rural or somewhere in between, living anywhere from a developed to an emerging economy. It had to be simple to survive in places without roads, advanced technology or access to reliable spare parts. It had to be quiet, reliable and easy to use. It also needed to have mass appeal, so that it could be produced on an enormous scale.

A scooter was considered but rejected: it was too complex for people in emerging economies, and, its wheels were too small for poorly maintained roads. Fujisawa specified ease of driving, by requiring that it could be driven with one hand while carrying a tray of soba noodles in the other. He is quoted as saying, “If you can design a small motorcycle, say 50 cc with a cover to hide the engine and hoses and wires inside, I can sell it. I don’t know how many soba noodle shops there are in Japan, but I bet you that every shop will want one for deliveries.”

Honda’s new vehicle was a 1958 Super Cub C100. It featured a low-floor backbone step-through pressed-steel frame. One important innovation, was their use of inexpensive but light weight plastic for the front fender and leg shields. This was the first motorcycle use of plastic. While the vehicle combined the characteristics of a scooter with the stability of a motorcycle. The 17-inch wheels, especially, gave the vehicle a stability not found in scooters. An automatic centrifugal clutch 3-speed transmission, and an air-cooled 4-stroke 49 cc (despite the model name) OHV engine, powered the vehicle. Top speed 65 km/h. Wheelbase 1 181 mm, Length 1 781 mm, Width 569 mm, Mass (wet) 65.0 kg.

The design was tested in advance of production, to eliminate any flaws. It would cost too much to fix problems after production started. It almost worked, except for an issue with the clutch, that required production and sales staff to visit each customer at home to fix each vehicle.

The early history of the Honda Cub will end here, with interested readers encouraged to either read the Wikipedia article or watch a more enjoyable but less extensive 8 minute video about it.

One challenge facing the world is reducing carbon emissions, and eliminating fossil fuels. This means transforming Honda Cubs into electric vehicles. So, even though Honda made an e-Cub prototype in 2019, they have never developed it into a production model. Why not? Is it because they are in too close a relationship with fossil fuel suppliers?

The facilities of Shanghai Customs Ltd, 57 Gao’an Road (near Hengshan Road), Xuhui District, Shanghai. Please note the Cub inside the facilities being modified, and the logo on the wall. Photo: Shanghai Customs.

Shanghai Customs Ltd was founded by Alexander Style. It sells e-Cub kits throughout the world for US$ 2 800. There are three kits available for the C50, C70 and C90 models. The non-battery kit lacks more than just a battery. However, it claims to come with everything needed except a battery, charger, frame, front forks and front suspension. One step up is the full kit. The name is a misnomer, since it too is another partial kit, which is like the above kit but with a battery and charger. The full kit with frame and forks provides everything needed for an e-Cub build. Kits are designed for amateur installation, described as plug and play, with colour coded and numbered wiring. Assembly takes from about 15 hours of work, using only hand tools. The finished e-Cub is powered by a removable 1.3 kWh Panasonic battery that provides energy to a 1 000 W, rear hub motor, that can be boosted to 3 000 W for short periods. Top speed for the vehicle is still 65 km/h, with a range of 50 km. Included in the kit are new LED lights, and fully digital instrumentation.

Fully Charged YouTube channel presented a nine minute video about the company, and its conversion kits.

Phil Tucker commented 2021-02-25 on the YouTube video: “(Don’t get me wrong as I’m a massive “all electric” fan….) but I’m not necessarily convinced that someone who maybe bought an old hand me down cub off an older brother or sibling for say, fifty dollars to use to go to work on is then going to decide to spend 2500 dollars to go electric! Also I think some of those brand new Chinese electric bikes are actually cheaper than that?”

This brought several interesting replies including one from Siclmn Cyclerider: “I spent $6,000 on a Stromer electric bicycle.” However, several others commented on the need for improved brakes, that appear to come with the kit.

To put the e-Cub in perspective, it should probably be compared with a minimalist electric car, such as a Citroën Ami, measuring 2 410 mm in length, 1 390 mm (excluding mirrors) in width and 1 520 mm in height, with a total weight of 485 kg. It has a 6 kW electric motor operating at 48 V, and powered by a 5.5 kWh lithium-ion battery. It is registered as a light quadricycle for two, allowing a top speed of 45 km/h, and a range of 75 km. When it was first released, it came with a purchase price of $6 600, a leasing fee of $22 per month, or an on-demand rental for around $0.29 per minute.

One major difference between the two vehicles is that while the Ami is a purchase of a product, the e-Cub is buying parts for a project. This involves people with two totally different mindsets. The e-Cub will only appeal to people who have the desire, time and opportunity to customize their own vehicle. The Ami will only appeal to people who want to buy happiness.

Note: There will be no attempt to enter fruitless discussions about other best selling vehicles. Contenders will not even be named. The point of this weblog post is to examine a potential waste recycling challenge, that allows people to continue to use a perfectly good vehicle, despite its currently inappropriate power source, by replacing it with a suitable electric power train. Mopeds may not be for everyone, but this writer is convinced that in Inderøy they are part of a Rite of Spring where, much like the return of the swallows to Mission San Juan Capistrano, thousands of mopeds appear on the roads, allowing their 16-year old drivers to self-certify themselves as adults, and slowing traffic to 40 km/h. More mature readers, no longer subject to the excesses of teenage hormones, may prefer to see new opportunities that emerge from using a mobility scooter which, fortunately, are already electrified.

To this day, a Honda 50, probably a 1966 model, owned at the time by Victoria Ayerbe, is the only motorcycle I have ever driven, and only once. I have no intention of repeating this experience with either a fossil fuelled or electrified motorcycle. Indeed, I have no intention of converting a Honda Cub to an e-Cub. However, I would like to encourage people in Inderøy involved in the electrification of old scooterettes, as they were often called, possibly at Reodor, Inderøy’s bicycle repair shop. There could be other two-wheeled vehicle models that, because of local popularity, are more deserving to be adapted to electric power. Making kits for these could be an enjoyable community project. If readers have particular candidates for conversions, please tell other readers about them by making appropriate comments.

Downsizing the Garage

The Nobe 500, one of six European vehicles featured in this weblog post. Photo: Nobe

Four years ago today, on 2017-10-29, a weblog post titled Stuffing a 10-car garage was published. It presented a number of electric vehicles (EVs) that had awakened my curiosity over the years, along with one internal combustion engine (ICE) vehicle, the Citroën Berlingo. The one advantage of a virtual garage is that it is very easy to acquire and then dispose of vehicles.

The 2021 United Nations Climate Change Conference, the 26th held (COP26), is scheduled to begin 2021-10-31 in Glasgow, Scotland, two days after publication of this weblog post. The conference will end 2021-11-12. Hopefully something will be accomplished to prevent a climatic disaster.

EVs are not only increasing in number, but improving, technically and in terms of design. Unfortunately, most of this development is happening in vehicle segments that people should be avoiding . This weblog post presents six EVs made by six companies for six different segments from six different European countries. During the year this post has been in development, all of the models originally selected have departed the list, and been replaced by others. The number of continents represented has decreased from four to one, with an encouragement for people to buy locally produced products. I don’t believe I could do the same using North American products. Even, with this focus on smallish, affordable European EVs, it has been difficult.

Not many specifications are available for the selected vehicles at the time of publication. Those missing will be provided in subsequent updates, when I remember. The worst case situation in this post, is that of Fiat and its Giardiniera. Despite the initial hype and promises, at the moment it is looking more like vapourware. It is included to remind people that vapourware is a major problem in the automotive industry. It allows manufacturers to pretend that they are doing something, when in all likelihood nothing is happening at all.

In terms of the A segment, I had hoped that the Zetta CM1 had been developed further. I had wanted to put an improved Zetta in the A class, and even contacted the manufacturer, Russian Engineering and Manufacturing Company (REMC) in Toliatti about it. I received no reply to my email.

Segments D and above/ larger are ignored in this post out of concern for the environment.

CompanyModelSegmentCountry
Nobe500PickupEstonia
RenaultKangooMPVFrance
MicrolinoMicrolinoMicro (L7e)Switzerland
FrezeNikrobALatvia
Fiat500 GiardinieraBItaly
SonoSionCSweden
Six companies producing six vehicle models for six segments in six European countries.

Nobe 500

A Nobe 500 Pickup. Photo: Nobe

Pickups are typically regarded as American, so there would probably not have been many objections if this slot had been filled by any number of American vehicles including, in alphabetical order by brand, the Ford F-150 Lightning, the GMC Hummer, the Lordstown Endurance, the Rivian R1T, and the Tesla Cybertruck, There was a time when this list might have also included the Havelaar Bison and the Nikola Badger.

None of the vehicles listed above appeal to me. They are too massive. However, I will also admit, that the first vehicle I leaned to drive on, at the tender age of 14, was a Chevrolet Advance Design 3100 pickup, probably from 1952, in the farm fields of Okanagan Mission, near Kelowna. This featured the same split windshield, found on the Nobe 500. The Ford F-series, from the same time period, did not have this characteristic, although certain other F-series features do appear on the Nobe 500. This vehicle is at the top in terms of charm. I am waiting for it to appear dressed as a woodie (sic) wagon before buying one!

Renault Kangoo

The Renault Kangoo E-tech Photo: Renault

In terms of COP26, this vehicle should probably not have been included. It is, but only because of my infatuation with this type of vehicle. People should determine if this is the type and size of vehicle that meets their needs.

When we purchased a Citroën Berlingo in 2002, the other vehicle we considered was a Renault Kangoo. Both were considerably smaller than today’s vehicles. The Citroën was chosen, in part, because at that time there was no local Renault dealership. Currently, we are facing the opposite situation. There is no local Citroën dealership, but there is one selling Renaults. In addition, there are some indications that the upcoming 2022 Kangoo EV (termed Etech, previously ZE in Renault-speak) will offer a range of 285 km. Other specifications released so far include: battery capacity theoretical/ usable = 52/ 47 kWh; motor type = AC synchronous motor; power = 90 kW; torque = 245 Nm; and, importantly, a trailer towing weight braked = 1500 kg.

On 2021-10-28, a day before publication, we visited the local Renault dealer in Steinkjer, and found out that a vehicle should be available to test drive in 2022-05.

Badge Engineering: The Renault Kangoo will be badge engineered into a Mercedes-Benz EQT and a Nissan Townstar.

Microlino

A Microlino with space for two. Photo:Microlino.

Driving requirements vary, which means that a variety of vehicle types have to be made available. Many people live alone, and have little or no need for a vehicle that can transport more than themselves. For such people, a two person vehicle may be ideal.

In Our Journey, the idea for the Microlino originated when Wim, Oliver and Merlin Ouboter, asked: “How much car does one really need for daily driving?” In Switzerland the answer involved 1.6 passengers and 36.8 km on an average journey, along with parking challenges. This indicated to them that modern cars were over-engineered for urban use, especially if environmental factors, such as global warming, are considered.

Specifications: Overall length / width / height = 2 435/ 1 473 / 1 501 mm; wheelbase = mm; ground clearance = mm; curb weight = 513 kg; seating capacity = 2; battery type = Lithium-Ion (NMC/NCA); battery capacity = 14 kWh; range per charge = 230 km; motor type =; power = 12.5 kW; torque = 118 Nm; speed: max = 90 km/h; acceleration 0 – 50 km/h = 5s; regenerative braking = yes; cargo volume = 230 l; towing weight braked = 0 kg .

Freze Nikrob

The Freze Nikrob Photo: Freze

Another answer to the Ouboter question could have been the Freze Nikrob, based on the Wuling Mini EV. Rebadged and restyled by Dartz, it is assembled in Lithuania by Nikrob UAB. Dartz wants to sell the Freze Nikrob and its convertible version, the Freze Froggy, in European left-hand-drive markets. It aims for a 10-20% market share of the segment. At a price of €10 000, it is the cheapest in the EU. The focus is on selling to carsharing companies.

Specifications: Overall length / width / height = 2 917/ 1 493 / 1 621 mm; wheelbase = 1 940 mm; ground clearance = mm; curb weight = 665 kg; seating capacity = 4; battery type = lithium polymer; battery capacity = 13.8 kWh ; range per charge = km; motor type = permanent magnet; power = 13 kW; torque = Nm; speed: max = km/h; acceleration 0 – 100 km/h = s; regenerative braking = yes; cargo volume = l; towing weight braked = 0 kg.

Fiat 500 Giardiniera

An older Fiat 500 Giardiniera shown in this Dutch advertisement.

Giardiniera was a name used for Fiat station wagons. The name, in this context, means gardener. Fiat in 2018, before it became part of Stellantis, announced in general terms that it would be making a five-door, station wagon, hybrid version of a new 500. Fiat now seems to be transitioning to a battery electric brand. A Fiat 500 Battery EV station wagon appeals to me because, we need a vehicle that can be used to carry four (sometimes five) people, groceries, and workshop materials. When, or even if the vehicle will launch, remains speculative. Currently, Fiat is working on an electric replacement for the Panda, probably based on the Centoventi = 120 prototype. That vehicle is expected to launch in 2023.

One of my hopes with the Giardiniera is that the rear door will open more like a conventional door, hinged on the left/ traffic side, rather than a hatch, opening upwards. This was the way it opened on earlier models, made between 1960 and 1977, as shown in the above advertisement.

Sono Sion

The Sono Sion, equipped with solar panels. Photo: Sono

Of the vehicles described in this weblog post, the Sono Sion is the one closest in size to our current vehicle, a Mazda 5. Of its many attractive characteristics, it is its Open Service System that will be focused upon here. There are three different levels of service. Level 1 instructional videos and a catalog ensure that almost anyone can replace wear parts, without much prior knowledge. Level 2 involves a publicly viewable and available manual, that allows an extensive network of mechanic partners to offer more extensive repairs and service at an affordable price. Level 3 is for repairs involving high-voltage or body parts, Sono here wants to cooperate with an established European service provider.

I asked a number of people about this vehicle, and sent a copy of an information brochure. One response – from a person who works in the EV industry but for another company that doesn’t compete in the same market, was: “Oh interesting. Exciting for more players. The solar portion is neat! The aesthetics kind of baffle me. Utilitarian, met with early 2000’s interior design with forced elements like the screen and the green house strip. Doesn’t seem cohesive.” Another reply was: “it looks very generic Aka like a Toyota.” The most enthusiastic response came from a third person, “Love it. I’m a solar power human, so this has my full seal of approval.” Four and a half hours later, he added: “Upon further reflection, I would rank this as my top EV.”

Specifications: Overall length / width / height = 4 470/ 1 830/ 1 660mm; wheelbase = 2830 mm; ground clearance = 165 mm; curb weight = kg; seating capacity = ; battery type = liquid cooled lithium ion; battery capacity/ usable = 54/ 47 kWh; range per charge = 260 km; motor type =; power = 120 kW; torque = 270 Nm; speed: max = 140 km/h; acceleration 0 – 100 km/h = 9.0 s; regenerative braking = yes; cargo volume = 650 l; towing weight braked = 750 kg.

Personal Reflections

One of the most important specifications for a vehicle operating in a rural environment in winter is ground clearance. Here, there is no requirement to remove snow before it reaches 100 mm. Thus, ideally, this should be at least 150 mm clearance. However, is not always an easy specification to find. Our Mazda has only 135 mm, and this is noticed. Seating height is also important. In comparing different vehicles, the H-point measures the pivot centre of the torso and thigh, and the height of this in relation to the road, is what is important. This value is a compromise between being able to enter a vehicle elegantly, and being able to see the road.

In terms of range anxiety, we drive a car about 3 times a week, but often less. Once or twice the return distance will be under 40 km, often under 30 km; the other time(s) it will be under 80 km. About five times a year, our driving exceeds these values. Two or three times it will be less than 250 km; two or three times it will exceed that, but be under 400 km. Since our retirement started in 2017, we have only had one trip where the driving distance exceeded these values, when we drove to and from Bergen. It is about 750 km in each direction, but we spent two days driving each way, which also puts it in the 400 km a day range. When our daughter, Shelagh, lived in Umeå, Sweden, we would drive the 600 km distance in about 10 hours (including stops) in a single day.

The Norwegian Electric Car Association has an EV selector app (Elbilvelgeren), that can be used to help limit the number of EVs under consideration.

A screenshot of the Norwegian Electric Car Association has an EV selector app (Elbilvelgeren).

It allows one to select a range of values for price, range, brand, new or used, trailer capacity. Yes, trailer = tilhenger (in Norwegian) capacity is a must for Norwegians. A utility trailer is used instead of a pickup. These are the standard inputs one can choose from. In addition one can select/ add: launch year, heat pump, four wheel drive, high speed charging, battery size, trunk/ frunk size, electrical power usage, normal charging, number of doors, ground clearance, app for the car, number of seats, dimensions, roof rack capacity, acceleration, kW (power), guarantee, weight, wheel size and body type.

I used the standard one with some modest values, but only two cars came up: VW ID 4 and Skoda Enyaq. The list included both current and announced models to be purchased new. The reason only two models appeared could be because of the trailer capacity selected (1000 kg) and a price (max NOK 360 000). The two cars had a price of just under NOK 350 000. Of those two, I would select the Skoda. I tried the selector again, without the trailer, but with a ground clearance of 150 mm. Again, those two models came up, along with a Hyundai Kona and a Kia Soul.

My hope is that in four years time, 2025-10-29, that there will be a vastly improved EV market, with many more vehicles in the A – C segments, and even smaller vans/ multi-purpose vehicles.

The ICE Age

Frequently, I am accused of being a Citroën 2CV fanboy. In reality, I have always preferred the more elegant Citroën Dyane and the more practical Renault 4. However, I am more enthusiastic about fourgonnettes = small panel vans. French models include: the Citroen AU, AZU, AZ and, especially, the Acadiane, based on the Dyane, and the Renault 4 Fourgonette. English models include: the Morris Minor 1000 van variants, and the Traveller, a station wagon. However, the Hillman Husky, another small wagon, was my favourite. Since moving to Norway, I have come to appreciate the Saab 95, sold as a wagon as well as a panel van. Among larger vehicles, my preference is the International Metro Van, designed by Raymond Loewy (1893 – 1986). In terms of European vehicles the Morris Commercial J-type is next best.

I would like to thank those members of School District 40, New Westminster, who ensured that teacher parking, rather than facilities for pupils, were placed in the courtyard of Vincent Massey Junior Secondary School. This provided me ample opportunity to reflect on the merits of various vehicles, and made me an avid fan of European vehicles, because they seemed so much more appropriately sized than their American equivalents. Thank you.

Tama Electric Car

This weblog post will end with a short portrait of a predecessor to the Nissan EVs, such as the Leaf, developed by Tokyo Electro Automobile Company, which was spun off from the Tachikawa Aircraft company. The Tama Electric Car, assigned vehicle code E4S-47 I. E is for electric, 4S is for 4-seater sedan, 47 is for the year 1947, and I stands for the initial type. The Tama brand name refers to the factory location, a city in the Tokyo metropolis, in the foothills of the Okutama Mountains of southwestern Tokyo. Nissan notes, “When this car first rolled out in 1947, Japan was suffering from an acute shortage of oil, goods and food while the supply of electricity had a surplus since there were almost no home appliances or bulk users of electricity.” This particular vehicle was used as a taxi until 1951. Even as I complain about the Citröen E-Berlingo Multispace, it shows how far electric vehicles have progressed during the 70 years between 1947 and 2017.

Tama 1947 Electric Car Photo: Nissan Heritage Collection

Specifications: Overall length / width / height = 3 035/ 1 230/ 1 630mm; Wheelbase = 2 000mm; Curb weight = 1 100kg; Seating capacity = 4; Range per charge = 65km; Motor = 36V DC series-wound, rated at 3.3kW; Batteries = Lead-acid 40V/ 162Ah; Speed: Max = 35 km/h, Most economical = 28km/h.

Toyota

I have tried to approach Toyota neutrally, as a vehicle brand, over the past fifty years, but it has gradually sunk in my esteem. Today, it is probably the vehicle brand that I regard most negatively. Toyota’s major concern is that a rapid shift from ICE vehicles to EVs could erode its market share and reduce or eliminate profits.

Earlier, in our car purchasing careers, Patricia and I would attempt to evaluate Toyotas. However, they were not designed for our collective anatomies. If Patricia felt comfortable driving a model, it was uncomfortable for me, and vice versa.

Indeed, with the latest incident with their e-Palette pod at the Paralympics in Tokyo, Toyota is now permanently removed from my list of vehicle brands to consider purchasing.

The Last Straw

Toyota suspended use of the e-Palette transportation pods at the Tokyo Paralympic Games village, a day after one of the vehicles collided with and injured a pedestrian on 2021-08-26. After a couple of days the vehicles were taken into use again. The incident happened when a pod was manually controlled by one of its two on-board operators using the vehicle’s joystick. It pulled away from a T-junction and drove through a pedestrian crossing while Aramitsu Kitazono (1991 – ), a visually impaired athlete, was walking across. The vehicle operators were aware that a person was there but thought the person would realize that a bus was coming and stop crossing the street.

This situation involves a vehicle capable of autonomous operation, but being operated in manual mode. Thus, the statement made by Toyota CEO Akio Toyoda (1956 – ) is disingenuous, when he states that the crash shows autonomous vehicles are not yet realistic for normal roads. Indeed, all it shows is that human vehicle operation still results in accidents. Admittedly, there is a need to scrutinize the various levels of autonomous driving systems, including their safety and real-world capabilities. Such an incident is inconsistent with what is expected from a self-driving vehicle. A car cannot expect anything from a human being. It is the vehicle that must exercise caution.

This statement by Toyoda is the proverbial last straw. Toyota has opposed a fast transition to electric vehicles (EVs), something that appears critical to mitigate climate change. In 2021-06, several media sources reported that Chris Reynolds (1963 – ), an American Toyota executive with responsibility for government relations, travelled to Washington DC for closed-door meetings with congressional staff members. Here, he allegedly stated Toyota’s opposition to an aggressive transition to all-electric cars, arguing that internal combustion engine (ICE) – electric hybrids and hydrogen-powered vehicles should be accorded a bigger role.

Toyota has opposed stricter vehicle emission standards and electric vehicle mandates in North America, the European Union and elsewhere, including India, where Toyota’s Indian subsidiary publicly criticised India’s 100% electric vehicle sale target by 2030.

Toyota, and other legacy auto-makers, agreed with the Trump administration in a confrontation with California over the Clean Air Act. Toyota also sued Mexico over fuel-efficiency rules. In Japan, it argued against carbon taxes. Toyota concentrated on the wrong technology. Hydrogen fuel cells offer a costlier and, increasingly, a less developed technology in relation to battery EVs.

The Colours of Hydrogen

Hydrogen may be a colourless gas, but it is available in a variety of colours, based on how it is manufactured. Some methods are environmentally suitable, many are not, and there is no easy way to distinguish what is in any particular vehicle’s tank. This is a major problem for Toyota, when they attempt to promote hydrogen as an environmentally friendly product.

Black or brown hydrogen, uses black (bituminous) or brown (lignite) coal in the hydrogen-making process. Grey hydrogen is the most common form and is generated from natural gas/ methane, through steam reforming. With blue hydrogen, the carbon generated from steam reforming is captured and stored underground through industrial carbon capture and storage (CCS). It is, therefore, sometimes referred to as carbon neutral as the emissions are not dispersed in the atmosphere. However, it is probably more correct to regard it as low carbon because 10-20% of the generated carbon cannot be captured. In addition, storing the carbon can be problematic.

Green hydrogen is produced using clean energy from surplus renewable energy sources, such as solar or wind power, through electrolysis. Yellow hydrogen has two divergent meanings. It can refer to hydrogen electrolysis using solar power, or it can refer to electrolysis using mixed sources, including non-renewables, depending on what is available. Personally, I am attempting to refer to the latter as orange (up to 50% non-renewables) and red, when the non-renewables exceed this value. Pink hydrogen uses electrolysis powered by nuclear energy. Turquoise hydrogen may be more climate friendly than blue hydrogen, but it still relies on a fossil fuel, methane. It is currently an experimental process that uses methane pyrolysis to generates solid carbon. There is no need for CCS, and the carbon can be used in other processes, including tire manufacturing. I dislike the term turquoise being used in this way, because it greenwashes methane. Personally, I would like to refer to this as purple hydrogen.

Hybrids

Ferdinand Porsche (1875 – 1951) developed the Lohner-Porsche hybrid vehicle in 1901. It was the first hybrid. Yet, it is Toyota that is known for its hybrids. Hybrid electric vehicles become widely available with the release of the Toyota Prius in 1997. Since then, Toyota has stagnated. Despite the first plug-in hybrid car being built by Andrew Alfonso Frank (ca. 1934 – ), and his students, in 1971, the first mass produced plug-in hybrid passenger car was the Chinese BYD F3DM, launched in 2008. Before this, there were some experimental vehicles, including some Prius models, that were after-market plug-in hybrid conversions, but this was more despite Toyota, than because of Toyota. These added plug-in charging and additional lead-acid batteries, to extend range. It is not Toyota, but Mitsubishi, with its Outlander PHEV that is the world’s all-time best-selling plug-in hybrid. Hybrid vehicles require a duplication of technology, and do not offer any guaranteed reduction in fossil fuel consumption.

Politics

On 2020-12-07, Toyota announced plans to bring two EVs and a hybrid to the European market. On 2021-02-10, they repeated this for the US market. One of the EVs is the bZ4X SUV (and its badge engineered Subaru Solterra AWD). The others are more difficult to guess, but some sources think the plug-in could be a Toyota RAV4/ Subaru Forester. These EVs will not be built by Toyota, but by BYD, the Chinese EV manufacturer. Admittedly, plug-in hybrids can be efficient in some use cases, but it is an exaggeration, if not an outright untruth, to state, as Toyota did, that: “GHG [greenhouse gas contribution] of a currently available BEV model and PHEV model are roughly the same in on-road performance when factoring in pollutants created by electricity production for the average U.S. energy grid used to charge batteries.”

Toyota announced on 2021-09-08, that it is investing ¥ 1.5 trillion = ca. US$ 13.6 billion = ca. € 11.5 billion, in EV batteries as it is trying to catch up after falling behind in electrification. Masahiko Maeda (1969 – ), Toyota’s chief technology office, said that Toyota wants to secure 200 GWh of batteries by 2030. With an average battery pack of 60 kWh, this would be enough to produce more than 3 million EVs per year.

Toyota seems to be trying to game climate change, rather than taking it seriously. They are playing both sides: offering climate scepticism to climate sceptics and climate concern to environmentalists, when it suits them. My personal conclusion is that this approach makes Toyota one of the least ethical auto-makers in the world. It is attempting to undermine agreed upon climate goals, which may in themselves be too little, too late. Consumers with the possibility, should only be considering EVs for their next vehicle purchase. One approach is to retain a current ICE vehicle, until EV prices decline sufficiently to allow a purchase. Regardless, consumers should avoid buying Toyotas, until the company starts talking realistically about environmental concerns including human induced climate change, and shows real environmental progress by eliminating ICE (including hybrid) vehicles from their model program.

If not a Toyota, what?

In the coming months and years, a number of new, lower cost mass market EVs will be emerging, that are more reliable, economical and environmentally friendly than current vehicles. These will not be technological experiments on wheels, but functional mass-market products. The handling of fires in Chevrolet Bolts and Hyundai Konas, shows that manufacturing and selling EVs is not a game, but an endeavour with potentially serious and expensive consequences. While General Motors used delay tactics and let consumers deal with emerging safety issues, Hyundai replaced defective batteries almost immediately, despite the enormous cost. Now, General motors is also having to replace batteries at the same enormous cost, but has lost the respect and confidence of consumers. My expectation is that few consumers will want to prioritize buying a Bolt (or any other Chevrolet EV) in the future.

While there are several theories about innovation, one of the first and most influential was Everett Rogers’ (1931 – 2004) famous Diffusion of Innovations (1961) book, containing a model and curve (see below). Geoffry Moore (1946 – ) in Crossing the Chasm: Marketing and Selling High-Tech Products to Mainstream Customers (1991) regarded the step from early adapters to early majority as a chasm. Crossing it is difficult, yet critical for success. To understand why I am pessimistic about the fate of legacy auto-makers, one has only to read Clayton Christensen (1952 – 2020), The Innovator’s Dilemma (1997). He is not optimistic about the chances of any legacy manufacturer of anything surviving, in a disrupted market.

The Diffusion of Innovation Curve (Rogers, 1962 ...

For the past ten years, EV models have been released that have suited initiators, innovators and early adopters, with an emphasis on sportiness and luxury. These values are wasted on the majority, who want pragmatic solutions to their transportation needs. In Norway, the early majority are already in the marketplace. By 2025, the late majority will have started buying EVs. Laggards will be making EV purchases by 2030, if not 2027.

Today, I read in passing that there are 138 EV models available. I don’t know how accurate this is, but it seems a reasonable approximation. I will make no attempt to influence or micromanage any reader, or to suggest any of these models for anyone. Instead, I will allow readers to see some of my considerations, when I evaluate EVs, and why I need help to make sensible choices. At the most basic level, safety (including positive crash test results) must be in place, and the technology (battery, motor, charging) must be sound.

I am not known for my wise automotive purchases. In part, this is because practicality has to combine with my personal sense of style (some would say, frivolity) to create an attractive vehicle. My first car was a 1962 Hillman Minx convertible, purchased in 1966. It was fun, but unreliable. It lasted six months. Together with Patricia, over our lifetimes, we have owned 2 English, 2 French, 2 German, 2 Japanese and 1 Korean vehicles. In this time I have learned something about vehicles, my own personality, and Patricia’s.

My temperament attracts me to utilitarian French vehicles because of their comfort, ground clearance and load carrying capacity, and despite their notorious lack of reliability. Yet, I manage to see them possessing utilitarian elegance. I have appreciated the Citroën Berlingo since its inception, but I am less enthusiastic about its current and upcoming electric Multispace, its multi-purpose vehicle (MPV) variants. Even the new Renault Kangoo ZE update in the same segment, is not being built as an EV from the ground up. However, I find Renault (and its sub-brand Dacia) along with Fiat, the most interesting European automotive manufacturers, precisely because there is a sense of whimsy in their design. What they lack in quality, they make up in style. Fiat, back in 2018, announced a 500 Giardiniera station wagon. Then in 2019, it presented the Centoventi (120) concept, which they suggested, could become the first Panda EV. Both would be built on an electric only platform. Both hold a design appeal I find lacking in a BMW or Cadillac or a Ford F-150. The main difference between 2019 and now, is that Fiat has become part of Stellantis, headquartered in Amsterdam, but with 30 manufacturing facilities around the world. Most new Fiat products would be built on the Stellantis STLA Small EV platform.

Fortunately, Patricia won’t let me make the most ruinous decisions, and tempers my desire for fashion, form, frivolity and fun. She will undoubtedly tell me that it would be much more sensible to purchase a Hyundai, such as the upcoming Ioniq 3 (compact) or Ioniq 1 (mini) crossover SUV EVs, but that I should wait until 2025, when more mass-market models will be available, at lower prices. Nirvana is less than 40 months away!

Regardless of what happens, it should be noted that I will not be the first in the family to own an EV. My daughter, Shelagh together with her husband, Derek, own a BMW i3.

Shelagh and Derek’s 2017 BMW i3

Note: This post has been modified to include Shelagh and Derek’s change of marital status on 2022-11-22.

Ford Comuta

The 1967 Ford Comuta EV. Photo: Ford of GreatBritain.

In 1913, Henry Ford and Thomas Edison had collaborated on an electric vehicle. This was not a successful venture. Fifty-four years later, in 1967, Ford of Great Britain, produced their first modern electric vehicle, a Ford Comuta concept/ prototype, developed at Ford’s Dunton Technical Centre, east of London.

The Comuta was 2 032 mm long, and weighed about 545 kg. Along with a fiberglass body, it featured a steel backbone chassis, with an independent suspension provided by leading arms at the front and trailing arms at the rear. Drum brakes were also provided.

It could seat two adults in the front and two children in the rear. It’s top speed of 60 km/h and a range of 60 km if driven at 35 km/h. The rear wheel drive vehicle was powered by dual DC electric motors that put out 3.7 kW. These were originally designed as aircraft auxiliary units. Power came from four mid-mounted 12 V 85 Ah lead-acid batteries, producing a total of about 4 kWh. Ductwork piped air through the central backbone to provid motor cooling and heating for the passenger compartment.

Somewhere between two and six Comutas were built (sources conflict). It was unveiled at the 1967 Geneva Motor Show. One can be found in the collection of the Science Museum in London. The fate of the other(s) is unknown.

V2G

Weighing almost 4 000 kg, the Dream Car 123 EV has a range of almost 400 km at a speed of 60 km/h, with 3.5 hours of charging. Greg Zanis, the Dream Car 123’s developer, built the car’s tower garage to harvest solar and wind power to provide the vehicle with a personalized V1G capability. Photo: Zapcar.ru

V2G = Vehicle-to-Grid, involves one basic question. Who can a person trust? Technically, this is a weblog post about the transfer of electrical power to and from an electric vehicle (EV). This topic is forcing electrical vehicle stakeholders to think in new ways. It is a bit too early to call it a paradigm change, but that is the direction in which it is heading. One of the main challenges is to find out who is going to control (and profit from) this transfer. There are at least four potential answers: consumers, electricity producers/ grid owners, regulators and EV manufacturers. One’s approach to this control, may have much to say about the attractiveness of EV brands.

First, this blogger would like to criticize the Wikipedia article on the topic that begins by putting V2G into a purely economic perspective, essentially a system in which plug-in electric vehicles (PEV), “communicate with the power grid to sell demand response services by either returning electricity to the grid or by throttling their charging rate.” There can be other reasons for connecting a vehicle to the grid other than economic considerations. Security from power outages is one of these. Speed can be another. The type of ownership can be yet one more consideration, especially if one is a member of a co-operative. If economic considerations are to be made, then it is important that all costs associated with it are taken into consideration. Battery degradation is one of these, especially when the cost of a battery in a battery electric vehicle (BEV) is about one-third of the vehicle cost, in 2021. Then there are regulations, which impact stakeholders in different ways, some technical, some economic, some social and even some that are cultural.

Second, for a century consumers have been persuaded that their role in the electricity supply system is to use electricity, and to pay for it. With more discussion of a smart grid, this narrow role is being expanded. At a minimum, consumers living between 60 degrees S and 60 degrees N, are being encouraged to install solar panels. Increasingly, electrical power does not just need to be produced. It needs to be stored. Electrical producers and grid managers are also having difficulty responding to this change. This has necessitated grid regulators to enter the arena, and to make decisions that are typically unpopular with one group or the other.

Third, there are numerous variations on the theme, involving electrical power flow. Here are some of them.

  1. V1G = Unidirectional power flow, from one source
  2. V1G, from several sources
  3. V1G, with fragmented actor objectives
  4. V2G = Bidirectional power flow
  5. V2H = Vehicle-to-home
  6. V2B = Vehicle-to-building
  7. V2L = Vehicle-to-load
  8. V2X = Vehicle-to-everything

Apart from this paragraph, V2X will not be discussed further in the post. It is less about the transfer of (electrical) power, than communication between a vehicle and any entity that may affect, or may be affected by, that vehicle. It may incorporate other more specific types of communication, including: V2I (vehicle-to-infrastructure), V2N (vehicle-to-network), V2V (vehicle-to-vehicle), V2P (vehicle-to-pedestrian), V2D (vehicle-to-device) and V2G (vehicle-to-grid). The main motivations for V2X are road safety, traffic efficiency and energy savings.

Fourth, there are at least three approaches to V2G from automakers. These will be examined in terms of three different EV manufacturers: Tesla, Volkswagen and Hyundai.

Avoidance

Tesla seems to want to avoid V2G altogether. Jeffrey B Straubel (1975 – ), Tesla’s chief technical officer, stated his opposition to V2G technology, because battery wear outweighs its economic benefits. This might be a satisfactory solution in areas that do not experience power outages, but even in California power companies are cutting off power, to prevent forest fires, during extreme weather situations. The deadliest and most destructive forest fire in California history, the Camp Fire in Northern California in 2019, is thought to have been caused by downed power lines. According to at least one source, during the Texas blackout of 2021, a Tesla owner who rigged up such a system to provide basic needs for his family, had his Tesla Warranty voided.

Tesla often undertakes unilateral actions, including software updates, that sometimes impact consumers negatively. On such change occurred in 2019, when Tesla updated system software to “protect the battery and improve battery longevity,” and it resulted in a range loss for only “a small percentage of owners.” In Norway, a lawsuit was filed with the (consumer) Conciliation Board, 2020-12. Tesla did not respond to this. On 2021-04-29, the board found Tesla guilty of throttling charging speed and battery capacity through this 2019 software update. It ordered Tesla to pay NOK 136 000 = ca US$ 16 000 for each vehicle registered in the case. There are about 10 000 such vehicles in Norway, and this judgement would also apply to many of them. The decision could also be even more significant, with similar legal cases in other countries.

Control

On 2021-04-05 Volkswagen Group announced that starting 2022-01-01, all vehicles built on its MEB platform will have V2G capability. This is probably a good enough reason for anyone considering a new Audi, Seat-Cupra, Skoda or Volkswagen vehicle should wait until then before buying such a vehicle.

At Volkswagen’s Power Day (2021-03-15) Elke Temme, Head of Charging & Energy at Volkswagen Group Components, stated that 6 500 GWh a year of renewable energy is not used due to lack of energy storage. She suggested that grid operators could store that electricity in car batteries if they have the technical and regulatory ability to do so. This is sufficient energy to power 2.7 million BEVs. She did not discuss how much Volkswagen could earn from such an arrangement.

Consumers may once again be concerned about how their interests are going to be taken into consideration, by Volkswagen Group. As individual consumers produce more power through solar panels, and other devices, it can be more economically beneficial for them to power their own houses – and vehicle batteries – first, before sending power into the grid. From the description of the Volkswagen system provided so-far, Volkswagen seems to want to take on the role of being an electrical system power broker, but one that is only capable of a binary relationship, in which either power is supplied to the grid, or taken from it. Similarly, there was no mention of compensating BEV owners for any battery degradation.

Flexibility

On 2021-02-22 Hyundai announced that its Ioniq 5 would offer V2L capabilities. V2L enables it to provide up to 3.6 kW of power to external devices. This is managed through 1) an Integrated Charging Control Unit (ICCU); 2) a Vehicle Charging Management System (VCMS); and 3) an on-board charger (OBC) . Users can access up to 70% of the vehicle’s battery capacity. This includes the ability to charge other vehicles. The Hyundai approach seems to offer a much more flexible solution, than those offered by Tesla or Volkswagen.

Hyundai’s new Electric-Global Modular Platform (E-GMP) will be underpinning new Genesis, Hyundai and Kia EVs. Between 2021 and 2025, they will be releasing 23 different models that use this platform. Its main components will be 1.) a battery pack under the cabin, 2.) an all-in-one motor, transmission, and inverter designed/ developed/ manufactured by Hyundai. This bundling will raise the maximum speed of the motor by up to 70 percent compared to existing motors, despite its small size, allowing it to produce up to 450 kW of power. Equipped with a 50 kWh vehicle battery pack, an EV will be able to provide 35 kWh of electrical energy that can be fed into a house during an outage. While the size of batteries has not been disclosed, they should offer a range of about 500 km, and allow 80% charging in 18 minutes, with an 800 V architecture and 350 kW charging speeds. A five-minute charge can add about 100 km of range.

Consumer Responses

What should consumers do? A first step is for every consumer to show a healthy scepticism to all proposals from other electricity stakeholders, including electricity producers and EV manufacturers. Assume they will not be acting in consumer interests, but in their own interests, until proven otherwise. If something seems too good to be true, it probably is. A second step is to understand how a smart grid operates, and the role of the various stakeholders in it, including consumers. Part of this could be a household level microgrid (MG). A third step is to understand, and potentially advocate for a broad right-to-repair legislation, to ensure that the consumer is fully in charge of the vehicle.

When an EV is connected to a MG, rather than to the larger grid directly, the consumer has an opportunity of using both energy production and energy storage sources optimally. The consumer can decide if power should flow from an EV to the main grid, a V2G strategy, or to the load, a V2L strategy, at any given time. Consumers should be encouraged to reduce loads in peak periods, or shift them to off-peak periods. EV scheduling and demand response programs help MGs to reduce costs/ increase profits. Sahbasadat Rajamand has used simulations to show costs can be reduced by 14.67% using optimized EV scheduling.

One energy related stakeholder that has not been heard from so far, in the presentation of this debate is the consumer’s insurance company. They are, in fact, not particularly keen about shifting electrical consumption to off-peak hours, particularly if those hours involve the night when consumers are sleeping. In Norway, they are actively discouraging consumers from using equipment such as washing machines, driers and dish washers during the night because of the fire risk. While potential cost savings look significant as a percentage, they are totally insignificant if lives are put in danger.

For consumers maximizing energy usage to off-peak hours, can be a tedious chore. Norwegian consumers have decided that the economic benefits are not worth the cost. Major electricity producers are advocating it, so that they can profit from selling power outside of their traditional market. The advantage of V2G comes from emergency preparation. As implied in a weblog post about the ACE EV, auxiliary electrical power offers an almost normal lifestyle during an electrical power outage. It can power refrigerators and freezers, hot water tanks, induction stove tops, conventional and microwave ovens, computers and their screens, lighting or broadband interconnections.

As readers can see from the above, this writer is more impressed with the V2L solution offerd by Hyundai Group than that offered by either Tesla or Volkswagen Group. It remains to be seen how other EV manufacturers, such as BMW, Ford, General Motors, Honda, Mercedes Benz, Renault-Nissan-Mitsubishi (including Avtovaz and Dacia brands), Stellantis (Chrysler, Citroën, DS, Fiat, Opel, Peugeot, Vauxhall), Toyota and numerous Chinese brands will develop, with respect to V2G.

Ace EV

The Australian Clean Energy Electric Vehicle (ACE EV) group is a startup founded in 2017 by Australian engineer Gregory McGarvie (ca. 1952 – ) and Chinese entrepreneur Will Qiang, in Maryborough, Queensland, Australia. Its goal was to manufacture electric vehicles in Australia, especially small, city vans aimed for small businesses.

In August 2019, ACE EV unveiled their range of three electric vehicles: the Cargo van, the Yewt pickup, and the Urban 3-door hatchback. Sales of vehicles on the Australian market are expected to start in 2021, with prices of about AU$ 40 000 = NOK 250 000 = US$ 25 000. Castle Placement has been engaged to find AU$ 230 million in capital. Their prospectus provides further insights into ACE EV.

In addition to the Australian domestic market, developing countries throughout the world represent another target market for ACE EV. Competitive product pricing requires some changes to product development. The focus is on providing the underserved with access to electric vehicles and battery technologies. This will be done by offering kit based or do it yourself (DIY) modular packages for easy assembly and maintenance anywhere in the world; onboard Alternating Current Bidirectional/Vehicle to Grid (V2G) capabilities; and, Carbon Fibre Reinforced Plastic (CFRP) components that are 3D printable and recyclable.

Australia’s legacy auto-makers have closed down, with the last mass-market vehicles being produced in Australia in 2017. Now, only insignificant quantities of niche products are made.

The assembly of an electric vehicle kit could facilitate the training of EV service personnel, as well as more general education at secondary schools, and in other forums. This comment is addressed in particular to readers at Melvindale secondary school in Detroit, Verdal prison school, and the Inderøy Radio Control Club.

It may be less advantageous for private individuals to construct their own vehicles. If any problems arise, one wonders if Ace EV would accept responsibility, or attempt to deflect responsibility onto the builder/ owner. I asked my daughter if she would want me to spend some of her potential inheritance buying an EV kit? She tactfully replied that “a car is best purchased, not diy’ed.” Two minutes later, she added, “To put it bluntly, it sounds like a recipe for disaster.”

V2G capability could quickly become a must-have feature of an EV. In areas where short duration power outages are a relatively common occurrence, V2G could eliminate the need for a smelly, noxious wood stove. At cliff cottage, we removed the wood stove from our living room, with the intention of replacing it with a more modern variant. This would cost about NOK 50 000.

Unfortunately, a wood stove is an inferior substitute for electrical power. It does not power refrigerators or freezers, hot water tanks, induction stove tops, conventional and microwave ovens, computers and their screens, lighting or broadband interconnections. Its only function is space heating. One proposal is to invest in some form of a battery pack that could feed electricity to the house during an outage. V2G is one such answer.

I am eagerly awaiting a YouTube video, made by an Australian outback station owner, describing an Ace EV’s capabilities after a year of driving. Will it withstand driver abuse? is a critical question.

Aptera

Aptera 3 in 2021. (Photo: Aptera)

In the twenty-first century, the ancient Greek word, aptera = wingless, has been reused, this time to refer to a brand of extremely aerodynamic vehicles. Perhaps, it can best be regarded as reassurance that this vehicle will remain flightless, and not ascend into the skies. An equally appropriate name for the vehicle would be Phoenix, for the Aptera brand and vehicle was born in 2006, died in 2011, but was resurrected in 2019.

The original Aptera Motors, Inc., was founded by Steve Fambro (1968 – ) in 2006 and was originally named Accelerated Composites. Fambro was educated as an electrical engineer at the University of Utah, where he studied electo-magnets and antennas. Immediately before starting Aptera, he worked as a senior electrical engineer at Illumina, designing robots that make DNA, and vision systems to inspect that DNA. On LinkedIn, he writes, “Embracing efficiency as an ethos for a car company means we endeavour to do more with less. More range, more performance, more safety, more fun- with fewer batteries, less mining, less energy, less carbon. Doing more with less.”

Fambro initially worked as chief executive officer (CEO) at Aptera. He hired Chris Anthony to be the chief operating officer (COO) shortly after the founding. Thirty million dollars was raised in three rounds of funding, and Aptera grew from 3 to 50 employees. Aptera launched a prototype, the Typ-1, in 2007.

The design of the Aptera Typ-1 was futuristic, but due in large part to Jason C. Hill, president/ owner/ designer at Eleven, a transportation, automotive and mobility design consultancy, started 2003-11. Hill describes himself and his company on LinkedIn as “Specializing in design and product development as well as strategic design, advanced design, and design DNA creation. Currently working with a top New Energy Vehicle Company. Worked on AV solutions regarding the integration of sensor technology for the leading company of LiDAR tech. Recently worked with a MAAS start-up defining the design DNA and UX/UI for their unique urban mobility solution.”

The Aptera 2 Series, was a rebadged Typ-1, to be made available in two variants, a battery electric 2e, and a plug-in hybrid 2h. These could accelerate from 0 to 100 km/h in about 6.3 seconds. Their top speed was 140 km/h. About 5 000 pre-orders for the vehicles were made by California residents.

In 2008, Fambro relinquished his CEO position to Paul Wilbur, and became chief technical officer (CTO) for the company. When Wilbur joined Aptera he had 20 years of experience with Ford and Chrysler, and over 10 years experience as CEO of American Specialty Cars Incorporated, a tier 1 supplier. My thought on reading this, is that he was too integrated into the conservative automotive industry to function as a CEO of a venture capital financed startup.

Because of assorted production challenges that made it difficult to receive government financing for a three wheeled vehicle classified as a motorcycle, instead of a four wheeled vehicle classified as a car, the design was changed to that of a four wheel vehicle. This added immensely to the cost, and the original company was liquidated in 2011. Various reasons are cited for this, but one is the enormous amount of capital needed to actually produce a car.

After several years working with vertical farming, Steve Fambro and Chris Anthony, once again found an opportunity to relaunch the Aptera in 2019. This time it was Chris Anthony who was given the role of CEO. He had gained experience working as founder and chairperson at Flux Power, an energy storage technology company, for ten years from 2009-10 to 2019-12. Another major differences was that this new Aptera relied on crowd funding from enthusiasts, rather than venture capital from impatient capitalists. During the course of the intervening nine years, electric cars had matured. Batteries were larger and cheaper, motors were more powerful, and there was a better understanding of how everything worked.

Dimensions of the Aptera 2e and 3 respectively

Wheelbase2 819 / 2 743 mm
Length4 394 /4 369 mm
Width2 311 / 2 235 mm
Height1 346 / 1 448 mm
Kerb weight680 / 800 kg
Dimensions of the Aptera 2e & Aptera 3.

The Aptera 2e used an A123 Systems for the 20 kWh lithium iron phosphate (LiFePO4) battery pack, and Remy International for the 82 kW HVH250 electric motor. This was mated to a BorgWarner 31-03 eGearDrive transmission. A SAE J1772 compatible charging system at either 110 or 220 V was to be provided. The range was about 190 km.

The hybrid version also had a small, water-cooled electronic fuel injection (EFI) gasoline engine with closed loop oxygen feedback and catalytic converter that was connected to a 12 kW generator/starter. It is similar in approach to the range extender found on the BMW i3. With a 20 litre fuel tank and fully charged battery, the 2h could offer a range of 970 – 1130 km.

Aptera 3 evokes deja vu. It repeats the basic Jason C. Hill design, but modernized for the 2020s. Like many other smaller manufacturers of electric vehicles, Aptera has engaged the services of Munro & Associates, a company established in 1988. Munro & Associates, Inc., focuses attention on profit improvement through design innovation; not financial trickery or outsourcing. He claims that they use their 3 000 m2 facility to benchmark and redesign products using purpose built software, and an internal search engine to remove 20% to 60% of the cost while improving the product’s function and quality. Sandy Munro has his origins, like this weblog writer, in Windsor, Ontario, where he started working as a toolmaker at the Valiant Machine Tool Company.

The resin composite skin contains microfluidic channels filled with a coolant to transfer heat from the batteries, motors and solar panels to the underbelly and sides of the vehicle.

Technically, the Aptera 3 will come with either two or three wheel hub motors for front-wheel drive or all-wheel drive. Each motor provides 50 kW, and is provided by Elaphe Ltd, in Ljubljana, Slovenia. Multiple solar panel, motor and battery configurations are planned, with ranges from 400 to 1 600 km provided by 25, 40, 60 or 100 kW·h lithium-ion battery packs. Embedded solar cells will contribute up to an additional 65 km per day from sunlight alone under ideal conditions. With average daily commute distances estimated to be about less than 50 km per day, this allows Aptera to claim that they are producing a never charge vehicle. Prices vary from US$ 25 900 to over US$ 47 000. The all-wheel-drive version will accelerate from 0 to 100 km/h in 3.5 s. The two-wheel-drive versions have a 0 to 100 km/h time of 5.5 s.

A number of details for the Aptera 3 are missing. This includes the charging technology to be used. Several enhancements/ options are offered: SafetyPilot adds Level 2 autonomy capability, including facial tracking, lane keeping, adaptive cruise control, and emergency braking; Enhanced audio provides three more channels of audio including an added lightweight transmission-line subwoofer; Off-road kit increases ground clearance and provides tougher wheel covers; Camping kit provides an integrated tent and rear awning; and, Pet kit adds a pet divider, a way to secure a pet, a rear ladder and other assessories for an animal.

From other sources, it appears that Aptera will use batch processing (rather than an assembly line) to produce its products. A batch could consist of between 100 to 200 units that have highly similar characteristics. Batch production would reduce capital investment.

Two new front-wheel drive (FWD) limited editions will be available. The Paradigm Edition is described as “The Most Efficient Vehicle on the Road” with a 640 km range, 100 kW drive system, with solar panels. The Paradigm + is “The Most Efficient Long Range Vehicle on the Road” with a full 1 600 km range, 100 kW drive system, and solar panels.

Another Aptera 3, showing off its solar panels (Photo: Aptera)

Notes: 1. The noun Aptera, has a long history. It was the name of an ancient city in Crete, as well as the name of another ancient city in Turkey. Carl Linnaeus (1707 – 1778) classified Aptera as the seventh and last order of Insecta. It included many diverse creatures without wings, including crustaceans (crabs/ lobsters/ shrimp/ woodlice/ barnacles, etc.), arachnidans (spiders), myriapods (terrestrial creatures having anywhere from about 10 to 750 legs), and more. In 1795 Pierre André Latreille (1762 – 1833) divided it into seven orders: Suctoria, Thysanura, Parasita, Acephala, Entomostraca, Crustacea, and Myriapoda.

2. Wikipedia claims that the 2e was (going to be) assembled in Canada. Canada is a big place, and I haven’t been able to find out where, specifically, this was going to happen. If anyone knows, please advise and the text will be modified appropriately, with an acknowledgement.

Arcimoto

The Arcimoto Deliverator, is a last-mile battery electric delivery vehicle, made in Eugene, Oregon, USA. (Photo: Arcimoto)

Arcimoto describes itself as a manufacturer of ultra-efficient electric vehicles. These are (relatively) low cost and low environmental impact vehicles.

The Fun Utility Vehicle (FUV) is a three-wheeled, two-passenger tandem = seated one behind the other, vehicle. This vehicle uses a platform that forms the basis for other models. Specifications for the FUV are shown in the table below. All values are converted and approximate. American units are available from the Wikipedia article on Arcimoto, or the company website.

Acceleration0-100 km/h in 7.5 s
Top Speed120 km/h
Turning Circle8 840 mm
Power57 kW
Range160 km city
ca 100 km @ 90 km/h
ca 50 @ 110 km/h
Overall Length2 870 mm
Overall Width1 549 mm
Max Height1 651 mm
Ground Clearance140 mm (unladen)
Wheelbase2 032 mm
Shipping Weight590 kg
GVWR816 kg
Specifications for the Arcimoto Fun Utility Vehicle, converted to conventional metric units.

Munro & Associates, is providing engineering advice to Arcimoto. Some of this work is related to product engineering, such as reducing vehicle weight to 500 kg. Others aspects relate to expanding production capacity and profitability. Arcimoto has two strategic directions: It can focus on expanding production to 50 000 units/year, or it can concentrate on higher profit margin products (Deliverator/ Rapid Responder) at its current 3 – 5 000 unit/year rate, or some combination of both. On 2021-01-06, Agreed to purchase a larger, 17 000 square meter manufacturing facility, a few blocks away from its previous/ current location in Eugene.

An aside: Sandy Munro (? – ) is a Canadian automotive engineer, who started his working life as a tool and die maker. He worked for Ford, starting in 1977, but left in 1988 to start his own consultancy. His work incorporates design for assembly (DFA)/ design for manufacturability (DFM) principles. His focus is on lean design, which is also the name of his website. His tear-down reports critically examine quality issues of specific vehicle models. They are most often used by assorted Asian start-ups. As the wise, old man of the automotive industry, he begins his YouTube videos with, “Hey, Boys and Girls …” Munro is also assisting Aptera with a relaunch of their vehicle, abandoned ca. 2009.

The FUV platform uses pouch cells from Farasis Energy, a Chinese battery manufacturer, providing a total of 19.2 kWh. While the battery is capable of accepting level 2 charging, Arcimoto plans on making fleet vehicles capable of handle higher charging rates.

Arcimoto is not developing in-house autonomous driving capabilities, but provide a foundation for third party hardware and software that will integrate into the vehicle platform. For example, steering is drive by wire allowing software to control wheel direction without additional hardware. Advanced driver-assistance system (ADAS) features will be gradually added up to level 5 (Eyes off) autonomous driving.

The Rapid Responder™ is an emergency response vehicle that retains the two passenger configuration, but has equipment found on emergency vehicles. It is inexpensive (US$ 25 000), easily manoeuvrable through traffic, and capable of reaching places inaccessible to large trucks.

The Deliverator® replaces the rear seat with a large cargo area accessible by a door on the starboard side (right side facing forward) for last-mile delivery. Because of its small footprint, it can park in places unavailable to larger vehicles.

In development is the Cameo™. The passenger seat and storage compartment is replaced with a rear-facing seat, for a camera person to film various activities. It is aimed at the “film and influencer industry”. Also in development is a flat-bed pickup variant, and the Roadster, “Anticipated to be released in the first half of 2021, the Roadster is designed to be the ultimate on-road fun machine. Built on our patented three-wheel all-electric platform, … [it] features an incredibly low and forward center of gravity, twin-motor front wheel drive, instant torque, and a fully-connected seating stance.”

On 2021-01-26, it was anounced that Arcimoto will be buying Tilting Motor Works’ assets for around US$10 million, along with Arcimoto shares. Arcimoto want to integrate these into future products. TRiO, which is the most popular three-wheel conversion kit for touring motorcycles, provides a comfortable and stable ride, but with the riding characteristics of a motorcycle. This means that the rider/ driver can drive/ pilot their vehicle as if it were a two-wheeled motorcycle, yet eliminate the need to put their feet down while at a stop, or riding in slow traffic.

Tilting Motor Works’ technology in operation. Photo: Tilting Motor Works.

Upcoming electric vehicle posts

With so much time spent researching and writing about computing, there has been less time available to research and write about electric vehicles. Currently, five drafts of weblog posts are either scheduled or pending. These are:

Aptera will be the subject of the next weblog post on electric vehicles. It is a three-wheeled streamlined (enclosed) vehicle. Originally scheduled to be launched ca. 2010, this vehicle was a focus during my teaching career. The project was abandoned, but has since been revised.

Paxster has much in common with the Arcimoto Deliverator, but is a four-wheeled vehicle. It used for urban mail distribution by the Norwegian postal service, Posten.

Frikar is a pod bike, made in Sandnes, Norway.

Eav from Electric Assisted Vehicles Limited, of Bicester, England, is an eCargo bike with electric power assistance for last-mile transport solutions.

e-Cub is about Shanghai Custom’s electric conversion of the world’s most popular vehicle, the Honda (Super) Cub, with over 100 million units having been produced since 1958.

Mobilize is the name of Renault’s new mobility division. This division will offer car-sharing, energy and data-related services to help make transportation more sustainable. Their first prototype, the EZ-1, was presented 2021-01-15. A production model could be a replacement for the Renault Twizzy.

Additional electric vehicles will be discussed in Downsizing the Garage, scheduled for 2021-10-29, the fourth anniversary of Stuffing a 10-car garage, which appeared 2017-10-29.

Panel Vans

A 1961 Hillman Husky panel van in Christchurch, New Zealand. This is an Audax design from Raymond Loewy (1893 – 1986), who also designed vehicles for Studebaker and International Harvester. (Photo: Riley, 2011-10-23)

A panel van is a cargo vehicle with (up to) three distinguishing characteristics. First, it is based on a passenger car chassis. Second, there is typically only one row of seats for a driver and either one or two passengers. The area behind this row is for cargo/ goods/ freight. Third, (optionally,)there are no side windows behind the B-pillar, which is the roof support for the vehicle immediately behind the front doors.

In the past, some panel vans were almost identical to station wagons, but with glass side-windows replaced with steel, and rear seats removed. In the above photo, the windows are still in place, but painted with signage. Others featured a raised cargo area, behind the B-pillar. British panel vans, especially the Hillman Husky and Commer Cob, with their Audax design from 1960 to 1965, by Raymond Loewy (1893 – 1986), appealed most to me in the 1960s.

An aside: In part, this preference for British vehicles came from spending most summers in Kelowna, British Columbia, where my mother grew up. The community seemed to have a split personality: Half of the population drove British cars, the other half American. The first vehicle I ever drove was a Chevrolet pickup, in a farm field. I also spent a lot of time driving to beaches in the back of my aunt’s 1939 Plymouth. However, most of my mother’s friends had their own Austin A40s, Morris Minors, and even a Mini, bought in 1960.

By the 1970s, station wagons such as the Volkswagen Squareback and Volvo Amazon station wagon/ 125 and, later, Volvo 145 were also favourably viewed. This position was overtaken by the Saab 95 panel van in the 1980s and early 1990s. Our landlord in Aukra, Norway, had such a vehicle. Sometimes he would take us into Molde, about 30 km away, with Trish sitting in the passenger seat, while I lounged in the back. At the time, this was all perfectly legal. With the introduction of the Citroën Berlingo and Renault Kangoo in 1996, these two models dominated my thoughts. They no longer featured the front end, and lower seating height of a small car, but had a distinctive cockpit that improved visibility.

Part of the appeal of a panel van is that both sides and, potentially, the back, can be used to display artwork. This is part of their charm, and I have spent considerable time contemplating what I would paint on these surfaces. This characteristic does not extend to the panel van’s passenger vehicle cousin, the multi-purpose vehicle (MPV). Despite their inferiority in displaying artwork, they also have one major advantage. When they aren’t busy carrying cargo, they can also haul up to five, and sometimes even seven people. This group of vehicles also includes the Kia Soul.

Since retirement in 2017, I have been unable to justify buying a panel van. We are reduced to one vehicle in the household. Even if that one vehicle is used mainly by a single person at a time, and sometimes even two people, it has to be capable of carrying at least four people. Unfortunately, the premise of owning a panel van was dependent on having more than one vehicle in the household. Any new vehicle means that it won’t be a panel van, but could be an MPV.

Why an MPV? Apart from driving to the local store, or SpirenTEK, the local hacker space, which could be done with any vehicle, the answer is to transform it into a primitive mini-camper, that could be used to explore Trøndelag/ Norway/ Scandinavia/ Europe at a leisurely pace. There are companies that make removable camper conversions, but it is also something that could be made in almost any woodworking workshop. Thus, the MPV is the most relevant type of vehicle to consider.

There are smaller contenders: a Fiat 500 Giardiniera (if it ever makes it into production, hopefully with a side opening tailgate), a Hyundai Kona, or a Kia e-Niro, all vehicles that have suitable range! If worse comes to worse and price becomes an important consideration, there is always a Dacia Spring, or a Renault Zöe. Renault has also said it will reduce the number of platforms it builds on, which probably means it will discontinue its Renault Twingo EV. They have also said that they will introduce a Renault 5 hatchback EV in 2023 or 2024 (probably a replacement for the Zöe), and a Renault 4 retrostyled mini-SUV EV in 2025. These would both use a new CMF-B EV platform, designed for electric compact vehicles, and be built at the Douai plant near Lille, France. None of these vehicles would make a suitable mini-camper. Apart from power, torque and sufficient battery capacity, which determines range, liquid battery cooling is imperative.

EV variant vans prior to 2021 were better suited to flat, slow moving urban landscapes, than to the mountainous terrain of Norway. Fortunately, both Renault and Citroën have updated their smaller vans. Soon these will be available with improved motors and batteries, so that they provide sufficient range and power. Are they once again fit for purpose? The availability of liquid battery cooling will provide the answer. If not, the Kia Soul EV does.

A 2021 Renault Kangoo, a multi-purpose vehicle, available in ICE and EV (called ZE in Renault-speak) varieties. Buying one is dependent on it coming with liquid cooled batteries. Photo: Renault.

Update: On 2021-02-14 some minor changes were made to improve the text, and to help people better understand locations in Canada and Norway.