Twin Otter: A tidbit

First flight of the new Series 400 Twin Otter, manufactured by Viking Air (the current type certificate holder). This airplane is the technical demonstrator C-FDHT. Photo taken at YYJ Victoria International Airport, 2008-10-01 by paneuropean at Wikipedia.

The Twin Otter is a popular and successful commercial aircraft, with 985 units built, as this weblog post goes to press. It is praised for its rugged construction and STOL (Short take Off and Landing) characteristics. Its price in 2017, was US$ 6.5 million.

Development of the Twin Otter started in 1964-01, when de Havilland Canada commenced work to modify the DHC-3 single-engined Otter design into a twin-engined turboprop STOL commuter airliner and utility transport, designated DHC-6. This involved lengthening the wings, and redesigning the rear fuselage, tail, and nose. Seating was increased to a maximum of 18.

Construction of a prototype began in 1964-11, which was first flown on 1965-05-20. There have been several production series, most notably the 100, 200 (from 1968-04) and 300 (from 1969). De Havilland ceased production of the Twin Otter in late 1988 after producing 844 aircraft.

Fortunately, after Series 300 production ended, the remaining tooling was purchased by Viking Air of Victoria, British Columbia, allowing it to manufactures replacement parts for all of the out-of-production de Havilland Canada aircraft.

On 2006-07-17, Viking Air announced its intention to offer a Series 400 Twin Otter. On 2007-04-02, Viking announced it had received 27 orders and options, and was restarting production of the Twin Otter. In 2007-11 a new assembly plant was established in Calgary, Alberta. The design has been modernized.

As of 2019-12, The 141 Series 400 Twin Otters have been made. Currently, 38% are operated as regional airliners, 31% in military aviation or special missions, 26% in industrial support and 5% in private air charter. About 70% use regular landing gear wheels, 18% are configured as straight or amphibious floatplanes, 10% use tundra tires and 2% use wheel skis.

In Norway, Widerøes Flyveselskap A / S became the major civil buyer of Twin Otters. In the late 1960s there was a large-scale development of small airports in Northern Norway and on the coast of Western Norway. Most of these airports had 800 meters long runways, suitable for Twin Otters, but almost nothing else. Widerøe bought their first Twin Otter in 1968, LN-LNM (s / n 127). In total, Widerøe bought 12 Twin Otters directly from the factory, besides 2 that were purchased used.

The Twin Otter showed outstanding reliability, and remained in service until 2000 on certain routes. Widerøe was, at one time, the world’s largest operator of Twin Otters. During one period of its tenure in Norway, the Twin Otter fleet achieved over 96,000 cycles (take-off, flight, and landing) per year.

Further information about the Twin Otter in Norway, but written in Norwegian, can be found here.

de Havilland Canada: A tidbit

A de Havilland Canada DHC-7-100 Dash 7 LN-WFE in Widerøe livery at Hammerfest Airport 1987-07-04. The author used Dash 7s to commute between Bodø and Tromsø between 1986 and 1988. Photo: Udo K. Haafke

De Havilland was started in 1920 by Geoffrey de Havilland (1882 – 1965) at Stag Lane Aerodrome, Edgware on the outskirts of north London. Operations were later moved to Hatfield in Hertfordshire. De Havilland Canada started life as a subsidiary in 1928, for the purpose of making assorted versions of Moths, variously described as light aircraft/ sports planes/ military trainers. During the second world war, de Havilland Canada was nationalized, by the Canadian government. It remained a crown corporation until the 1980s, when the government privatized it, then sold it to Boeing, in 1986.

While the British parent company is especially noted for the versatile design of its DH.98 Mosquito warplane, made largely of wood with 7 781 produced between 1940 and 1950, and the DH 106 Comet, the world’s first jet airliner, with 114 produced between 1949 and 1964, de Havilland Canada innovated some unique designs, especially suited for flying in the “bush”. These are:

TypePurposeCapacityfirst flightproduction#
DHC-1
Chipmunk
Trainer219461947 – 19561 283
DHC-2
Beaver
Bush1 + 719471947 – 19671 657
DHC-3
Otter
STOL Bush1 + 1119511953 – 1967466
DHC-4
Caribou
STOL Cargo3 + 3219581961 –
late 1960s
307
DHC-5
Buffalo
STOL Cargo3 + 4119611965; 1974122
DHC-6
Twin Otter
STOL Utility2 + 19651966 – 1988
2008 –
985
DHC-7
Dash 7
STOL Regional2 + 35 – 5419751978 – 1988113
DHC-8
Dash 8
Regional2 + 37 – 9019831984 –1 249

Despite Canadian government claims to have guarantees to prevent Boeing discontinuing product lines, both the Twin Otter and Dash 7 were discontinued, with their jigs and specialised manufacturing equipment destroyed. DHC was eventually acquired by Bombardier Aerospace in 1992, and integrated into the Bombardier group of companies.

On February 24, 2006, Viking purchased the type certificates from Bombardier Aerospace for all the out-of-production de Havilland Canada aircraft (DHC-1 through DHC-7). The ownership of the certificates gave Viking the exclusive right to manufacture new aircraft.

In November 2018, Viking Air’s holding company, Longview Aviation Capital, announced the acquisition of the Q400 program – a modernized version of the Dash 8, where the Q (for quiet) indicates that planes are fitted with active noise control systems – along with the rights to the de Havilland name and trademark. The deal, which closed on 2019-06-03 following regulatory approval, brought the entire de Havilland product line under De Havilland Aircraft of Canada Limited.

The Alternativity

Artwork made by Banksy in 2017 to promote the Alternativity.

On Tuesday, 2019-12-10 we had the pleasure of watching a 20 minute long televised nativity play from 2017-12-03. The actual performance took place in the car park of the Walled Off Hotel in Bethlehem, adjacent to an Israeli West Bank wall.

The Walled Off Hotel is owned by Banksy. Wikipedia describes him as, “an anonymous England-based street artist, vandal, political activist, and film director, active since the 1990s.” He is believed to be Robin Gunningham (1973 – ) born in Yate, 19 km from Bristol, England.

Banksy had contributed a scripting treatment for the play, then convinced Danny Boyle (1956 – ) to direct it. Boyle is especially known as the director of Slumdog Millionaire (2008) and as the artistic director of the opening ceremony at the Summer Olympics (London, 2012).

The difficulty with using celebrities is that they don’t actually have time to do the grunt work. Thus, two Bethlehem locals have to do most of the casting, rehearsing and the preparatory work needed to produce the play. These include drama teacher Riham Isaac and hotel manager Wisam Salsaa. Work on the play lasted six weeks from the middle of October to the beginning of December, 2017. Casting problems included finding a suitable donkey.

On Wednesday, 2019-12-11 we watched an hour long documentary about the production. This gave background material, about the play as well as insights into the situation facing the Palestinians. This included a fake apology on the 100th anniversary (2017-11-02) of The Balfour Declaration, a public statement issued by the British government announcing support for the establishment of a “national home for the Jewish people” in Palestine. This was done without any consultation with the Palestinian people.

As the Christmas season approaches, people are encouraged to watch both of these productions. In order for the background material to make sense, it is necessary to watch the play first!

ePlane: A tidbit

Harbour Air DHC-2 Beaver floatplane in Richmond, British Columbia, powered by an electric magniX magni500 propulsion system. Photo: Harbour Air.

On 2019-12-10 Harbour Air successfully flew the world’s first all-electric commercial aircraft, the ePlane, a six-passenger DHC-2 de Havilland Canada Beaver on floats, with call sign C-FJOS and production number 1030 of the 1 692 DHC Beavers ever built. Originally delivered with a piston ICE engine on 1957-03-01, it spent most of its operational life based in Prince Rupert, British Columbia.

This aircraft, with yellow and blue livery, is now powered by a 560 kW magni500 propulsion system. Its first electric propulsion flight started and ended on the Fraser River at Harbour Air floatplane terminal in Richmond, British Columbia at YVR South, part of Vancouver International Airport.

Richmond is the home base of Harbour Air, North America’s largest floatplane airline. It specializes in routes between Vancouver, Nanaimo, Victoria, Sechelt, Comox, Whistler and the Gulf Islands. There are also flights between downtown Vancouver and downtown Seattle. They also have a European subsidiary in Malta.

Harbour Air has a history of green operations, that is deeper than a typical greenwash. In 2007, it became the first airline in North America to achieve complete carbon neutrality in both flight services and corporate operations. It has announced its intention to build the world’s first completely electric commercial floatplane fleet, but because of certification requirements, including testing, it will have to wait until about the beginning of 2022 before this can start. The company is regarded as one of the best managed in Canada, and has won awards for this.

The Harbour Air fleet consists primarily of de Havilland Canada floatplanes: 14 DHC-2 Beavers (5 – 6 passengers), 21 DHC-3-T(urbo) Otters (10 – 14 passengers) and 3 DHC-6 Twin Otters (18 passengers).

In March 2019, Harbour Air announced a partnership with magniX to electrify the entire Harbour Air fleet over the long term. Harbour Air has noted that its initial electric-powered commercial flights will be on routes of under 30 minutes’ duration. The DHC-2 Beaver serves as the test prototype for the magniX motor, energy storage, and control systems.

MagniX is an Australian electric motor manufacturer for electric aircraft, wholly owned by Singapore investor Clermont Group. Its engineering headquarters is located on the Gold Coast, Queensland, Australia. Its global headquarters and US development centre is located in Redmond, Washington, near Seattle.

One of the main advantages of an electric motor in an aircraft is full torque at low RPM. In addition, the mechanics are simpler, reducing the number of parts as well as weight. For example, a propeller can be attached directly to the motor without a reduction gear.

The magni500 was unveiled at the Paris Air Show in June, 2019. It provides 560 kW, and 2800 Nm of torque. It weighs 135 kg. The smaller magni250 motor provides 280 kW, and 1400 Nm of torque. It weighs 72 kg. Both types of motors rotate at between 1900 and 3000 RPM, and offer 93% power conversion efficiency. Both motors can be regarded as high-power-density electric propulsion systems that provides a clean and efficient way to power airplanes. The company also makes a magniDrive 170 kW power electronics system used to run both the magni250 and magni500.

Sources: Beaver Tails ; Harbour Air ; Magnix ; Wikipedia – Harbour Air Seaplanes & Magnix .

Cybertruck update: A tidbit

Find the Cybertruck! Photo: Found on Electrek.co

There has been a lot of media content produced about the Tesla Cybertruck. Here are some comments.

  1. Alasdair McLellan noted that the window damage to the Cybertruck was, if not deliberate, at least expected. How else could Musk ensure that every newspaper, magazine, blog and any other source on or off the web, publish a photo of the Cybertruck, so that everyone in the universe knows what a Cybertruck looks like?
  2. Adrián Esper Cárdenas, Mayor of Ciudad Valles, San Luis Potosí, Mexico, saw the electric truck as having great potential as a local police and municipal vehicle. He reserved 15 Tesla Cybertrucks!
  3. Mike Gastin described the Cybertruck as a branding masterstroke. At 6:05 into the video he says (and writes) that Tesla is Delivering the Future – Today!
  4. Robert Llewellyn’s recent edition of Fully Charged News is full of the usual rants, this time about the Cybertruck as well as the Mustang Mach-E.
  5. Jameson Dow, writing in Electrek, is claiming that the Cybertruck is popular in markets where other Tesla products have failed to capture interest. “The Tesla Cybertruck is the first time we’ve gotten a chance to compare data between a sedan launch and a pickup launch from the same company. And it turns out that, despite Tesla’s brand appeal on the coasts, the Cybertruck is breaking new ground and doing quite well in the “heartland” – where pickup trucks are traditionally more popular than sedans.”
  6. Here is a reference to Matt Ferrell’s Undecided, who asks: Why do we hate something viscerally at first, and then come to love it a little while later?
  7. There are even more details at Design Prototype Test. It provides some engineering concepts missing in other sources, but there are also misunderstandings. For example, EVs do not have engines, they have motors.

A major challenge with many YouTube videos/ channels is that they are one-person operations, without sufficient quality control. Rants are very easy and cheap to produce. Quality, fact-based information is a little more difficult and expensive to produce. They also requires thought, in addition to emotion.

Tesla Cybertruck: A tidbit

Visitors to the Tesla Cybertruck webpage are greeted with an elongated version of this photo of the Cybertruck ptototype. (Photo: Tesla)

The term pickup is of unknown origin, but was first used by Studebaker in 1913 and by the 1930s had become a generic term for a light-duty truck having an enclosed cab and an open cargo area with low sides and tailgate. In North America, the pickup is mostly used as a passenger car and accounts for about 18% of total American vehicle sales, in part because it benefits from lower fuel and emission control regulations, and tax breaks from the IRS. Full-sized pickups and SUVs account for more than two-thirds of their global pretax earnings of GM, Ford and Fiat-Chrysler, because of their high prices and profit margins.

Elon Musk unveiled Tesla’s first pickup, the Cybertruck, in Los Angeles 2019-11-21. It is battery-powered. Tesla’s stated goal is to displace a large portion of fossil fueled light trucks sold.

Cybertruck’s styling is anything but charming, and many commented that the presentation setting, in both time and place. was that of the original Blade Runner. However, the Cybertruck has many positive characteristics including a durable exterior shell made of a light-weight titanium alloy, for passenger protection. It is also claimed that every component is designed for strength and endurance. These are important considerations in a truck.

Specifications, both estimated and revealed: Vehicle mass = 2 700 kg/ 6 000 lbs; payload = 1 600 kg/ 3 500 lbs; power = 570 kW/ 775 HP; storage space = 2 830 litres/ 100 ft3 ; vault aka bed length = 2 meters/ 6.5 feet; ground clearance = up to 410 mm/ 16 “; approach angle = 35 degrees; departure angle = 28 degrees; seating = 6 in two rows.

Characteristics that vary, depending on the model, are included in the table below.

1- motor 2-motor3-motor
Drive wheelsRWDAWDAWD
Range km/ miles400/ 250500/ 300 800 / 500
0 -100 kph; 0 – 60 mph in s< 6.5< 4.5< 2.9
Top speed kph/ mph177/ 110193/ 120209/ 130
Towing capacity kg/ lb3 400/ 7 5004 500/ 10 0006 350/ 14 000
Price (to closest US$ 1 000)40 00050 00070 000

Compressed air is an important feature of the Cybertruck. It allows for a self-levelling suspension which compensates for variable load. In addition it provides power for pneumatic tools. On-board power inverters supply both 110 and 220-Volt electricity, for electrically powered tools.

At the presentation, Tesla’s armoured glass failed to work as intended, when a steel ball thrown by design chief Franz von Holzhausen shattered two windows in two attempts. The presentation ended with a Tesla Cyberquad electric ATV being loaded onto the truck vault, using built-in tailgate ramps. The Cyberquad was then plugged into the Cybertruck’s onboard power outlet, to charge it.

My hope is that many people currently buying Ford F-150s, Chevrolet Silverados, Rams and other ICE pickups, will be encouraged to buy either a Cybertruck, or a more conventional looking Rivian R1T, or other suitable electric vehicles. Personally, I am not part of the pickup culture. My Brenderup 4310S utility trailer meets almost all of my freight transport needs, and should do so for the rest of my life.

Smartphone Case Materials

For readers under 20, this weblogpost features this photo of a public telephone after it has been vandalized. It may appear to be unrelated to the text, but the materials found here could be repurposed to make a smartphone case, while improving the local environment. Photo: Jakob Owen.

This weblog post is an English language version of content prepared for students in my technology classes. I never was too concerned about the official goals of the course, apart from making sure I could document that they were being met. Some of my goals were to encourage personal expression, and upcycling (or at least reuse) of materials. In addition, another purpose was to encourage thinking about ethical and aesthetic decisions.

Assignment: As part of a design process, you are asked to produce a smartphone case for yourself. This will involve the selection of materials for the case, and the selection of processes to transform the material into a final product. You will have to defend your choices ethically and aesthetically.

While this post presents an overview, it is insufficient in depth to be used to defend your choices. You will have to research your material choices further. Please be aware that fake information abounds. For example, latex is often described as a sap. It isn’t.

Below are some descriptions of some materials that can be used to make smartphone cases. The list is not exhaustive, and you do not have to use materials found here.

Bamboos are evergreen, perennial flowering grasses. They are some of the fastest growing plants in the world. Bamboo has a higher specific compressive strength than wood, brick or concrete, and a specific tensile strength about that of steel.

Smartphone cases can be made from wood. Materials include hardwoods such as cherry, and softwoods, such as redwood.

Smartphone cases can be made from a number of different textile materials. This includes woven fabric from cotton, linen, wool or synthetics. The yarn used to weave with can be dyed prior to weaving, or the fabric can be dyed afterwards. Tie-dying is another approach. Various types of yarn can be knitted or crocheted into cases.

Leather is made from animal hides of cows and other animals. It is very soft and durable. For many people, leather symbolizes style and luxury. For others, it symbolizes animal cruelty. It can be used to make smartphone cases.

There are a wide variety of polymers that have been developed, but only some of them are suitable for smartphone cases. Polymerization is the process of combining many small molecules called monomers into a long chain. Plastics make extensive use of carbon in their chains. Some are natural, most are synthetic.

Synthetic leather is made from different types of plastic, most commonly polyurethane and polyester. It is soft and pliable.

Natural rubber is made from latex, a milky fluid found in 10% of all flowering plants. It is not sap, but a separate substance, separately produced, and with separate functions, but mainly as defence against herbivorous insects. People with latex allergies should avoid smartphone cases made of rubber.

Synthetic rubber is made from petroleum. Both natural and synthetic rubber have very similar characteristics, so it is difficult to tell them apart.

Polycarbonate is used in a wide variety of consumer products. It is very strong and resists breaking. As a protective phone case, it is almost ideal.

Polypropylene is especially useful with injection molding, and its to form different shapes. For that reason, it is very easy to manufacture smartphone cases from it.

Polyurethane is not as strong as polycarbonate but still offers phone protection. Polyurethane can be hard or soft, with many smartphone cases made from recycled polyurethane.

Silicones are polymers that include any synthetic compound made up of repeating units of siloxane, which is a chain of alternating silicon atoms and oxygen atoms, combined with carbon, hydrogen, and sometimes other elements. They have low thermal conductivity; thermal stability from -100 to 250 °C; low chemical reactivity; water repellent; low toxicity; do not support microbiological growth; resistant to oxygen, ozone, and ultraviolet (UV) light; Silicone can be formulated to be electrically insulative or conductive. Silicone’s softness and flexibility makes it useful for protective smartphone cases.

Carbon fiber is a relatively new invention that takes microscopic strands of carbon and weaves them together to make a very strong, resilient material that is stronger and lighter than steel.

People who like the look and feel of their metal smartphones may want a metal smartphone case. Most are made of aluminum, a lightweight metal used in many smart phones.

Because production processes are dependent on the material being processed, it is important to decide on the material to be used, before one decides on the manufacturing process. Said another way, if one has a limited skill set, those (lack of) skills will limit the materials that can be used.

Don’t own/ use a smartphone? No problem, design a case for a delicate object that you carry around with you regularly, and that could benefit from added protection.

Forensics for teachers: A tidbit

In the hydraulic approach to teaching, knowledge is poured into enthusiastic pupils, in much the same way that water is poured over enthusiastic coffee beans, before the dark rich liquid emerges inside a cup. Photo: Ikea

The hydraulic method of teaching consists of cutting open the craniums of pupils, and pouring in knowledge. This approach is fast, simple, effective and most importantly, cheap – because anyone can do it. There is no need to employ expensive teachers.

Information about hydraulics was included in one of my pedagogy textbooks. It struck me that some salient details were missing, such as detailed instructions on how to open a cranium, or pour in knowledge. At what rate should knowledge be poured? What type of knowledge should be used? Even if one advocates the hydraulic method, each and every pupil will require a personalized approach to maximize learning potential.

As strange as it may seem, instead of learning basic brain surgery, it might be more practical for a teacher to learn how to treat each student as an individual, and how to assign appropriate tasks and exercises. This actually eliminates the need for brain surgery, as well as text books – including pedagogy textbooks trying to be cute. Of course, it also assumes that the teacher is competent.

What happens when there is an incompetent teacher? Many situations arise where a teacher is teaching stuff he or she knows absolutely nothing about. Here is an example. Maritime deck officers in training arrived irregularly, at the prison where I worked. Given a choice of making pallets, working in the kitchen or attending school, they invariably opted to focus on learning more about their profession.

They usually express a desire to learn something about ship stability. It is perfectly understandable. Their textbook covering stability, is one of the worst anyone has ever encountered. Yes, even worse than the one about a hydraulic approach to teaching. Each topic is presented superficially, and then there are exercises to complete. No details about the methodology or algorithms used to solve these problems, are provided. At the back of the book, there are answers to some of the questions,  although these questions are never the ones the student needs to submit.

Officially, I had no competence to teach nautical subjects. However, I never let formalities stand in my way. All that was needed to do was to work back from the provided answers and the questions, to deduce the algorithms needed to solve that category of problem. With the algorithms reconstructed, I was then able to make up even more exercises for the student to solve.

Originally written as Textbooks, on 2019.01.12 04:55 / Modified 2019.05.14 10:09 and 2019.11.12 18:12.

The Charm of Endurance

The Workhorse W-15 Hero, renamed the Lordstown Motors Endurance. Photo: Workhorse Group.

In 1998, Workhorse Custom Chassis was founded in Cincinnati, Ohio to take over production of General Motors’ P30/P32 series stepvan and motorhome chassis. By 2005, the company was taken over by Navistar International, its supplier of diesel engines. Navistar then closed the plant in 2012.

AMP Electric Vehicles bought the company in 2015, and changed its name to Workhorse Group Incorporated, scattering attention on electrically and ICE powered delivery vans, buses and recreational vehicles.

In 2016, Workhorse introduced a W-15 Hero prototype, an all-wheel drive plug-in pickup. It used custom battery packs, to provide power to an electric-drive, with a range oft 80 miles/ 130 km. These batteries were housed underneath the vehicle to save space and provide more payload capacity. Confusingly, a BMW three-cylinder generator/ range extender was also provided, making this a hybrid ICE vehicle, rather than a pure battery electric. The vehicle was be built with four motors — one for each wheel — to deliver all-wheel drive. It also had outlets to run power tools off the vehicle battery.

In 2018, Workhorse scattered attention again, by announcing Surefly, its two-seat gasoline/ electric hybrid eVTOL (vertical takeoff and landling) octocopter.

On 2019-11-07, the newly constituted Lordstown Motors Corporation purchased the 576 000 square meter Lordstown Ohio assembly plant from General Motors. This plant originally opened in 1966. Confusingly, some reports say Workhorse Group has a 10% stake in this plant, others state that it has no financial involvement.

The plant has been a political liability for GM since its 2018 announcement that it would not use the facilities. This became an immediate political liability for Donald Trump, who earlier had discouraged supporters from selling their homes in Lordstown because of all the jobs he would bring back to the area

Steve Burns, previous CEO of Workhorse, and current CEO of Lordstown Motors, is fundraising to convert the plant so it can manufacture electric vehicles. What used to be called a Workhorse W-15, is now being called a Lordstown Motors Endurance, targeting pickup truck fleet buyers.

Meanwhile, Workhorse Group is bidding on a contract to make plug-in mail trucks for the U.S. Postal Service. Even if Workhorse wins the postal contract, it is unclear if the Lordstown plant would build those vehicles. Lordstown Motors does have an agreement to transfer the 6 000 existing pre-orders for the W-15/ Endurance from Workhorse Group to Lordstown Motors for production.

Burns has stated that Workhorse and Lordstown Motors share intellectual property related to electric-drive systems.

Production of the W-15/ Endurance is dependent on successful funding. If sufficient funds were raised, Burns said he would work with the UAW (United Auto Workers Union) to hire staff who didn’t transfer to other plants. Burns wants experienced vehicle assemblers to build the trucks.

Lordstown Motors has the money to buy the plant and work on the vehicle, but needs more money to continue development, conduct crash and safety testing, get the truck approved for sale and to retool the factory.

Lordstown Motors is not the only electric pickup attracting attention. The Rivian R1T pickup is possibly the top contender, is fully electric, has an exciting design that it shares in part with its R1S SUV sister, a large fan base willing and able to purchase vehicles, financing under control, and production facilities secured in Normal, Illinois. Ford has also announced its own fully electric version of its F-150 pickup. Yet, the pickup everyone is wanting to learn about is the Tesla Cybertruck, to be unveiled in Los Angeles, 2019-11-21. Which is why anything about the Workhorse W-15 Hero/ Lordstown Motors Endurance had to be pushed out now.

Max Whirlpool: A tidbit

Max Whirlpool (16) shown immediately after being unplugged, and waiting to be escorted outside of the kitchen, for smoking.

Max Whirlpool (16) has been expelled from the kitchen for smoking. A representative from the kitchen, who wishes to remain anonymous because he is unauthorized to speak on behalf of management, stated: “We practice tough love. There is no discrimination. Any electrical appliance caught smoking will be treated exactly the same way as Whirlpool. It will be removed from service. ” He added that Whirlpool has worked in the kitchen since 2003.

Our next microwave oven will not be a Whirlpool. That is not because of any dissatisfaction with Max, until the smoking incident. It is more related to Whirlpool as a corporation. It does not appear to take the health and safety of consumers seriously. In fact, even when one of its products was clearly to blame for a massive loss of life, 72 people, it attempted to blame others.

Recently, the Guardian reported that the Grenfell fire report “… went further than many expected, as did Moore-Bick’s dismissal of attempts by corporate groups to delay or prevent findings that might count against them, such as the “fanciful” claim by Whirlpool – the manufacturer of the Hotpoint fridge-freezer – that the fire could have been started by a cigarette.”

Earlier, the Guardian had reported on another fire, where MP Andy Slaughter said “… the government should learn from a serious fire in his constituency in 2016, when a faulty Indesit tumble dryer started a blaze in the Shepherds Court tower block in Shepherd’s Bush, west London. Residents escaped with minor injuries. Twenty fire engines and 120 firefighters attended the scene.

The same article cited a letter to UK business secretary Larry Clark, where Slaughter stated “that Whirlpool – which owns both Hotpoint and Indesit brands – had “a poor history of fire safety”.

Wikipedia, in a section titled UK Dryer Fire Risk, in its article about Whirlpool Corporation, writes: “Safety warnings about tumble dryers published on the Indesit and Hotpoint websites in 2015 advised customers that “In some rare cases, excess fluff can come into contact with the heating element and present a risk of fire.” Condensers and vented tumble dryers sold under the brands Hotpoint, Indesit, Creda, Swan and Proline and manufactured over an 11-year period between April 2004 and September 2015 present a fire risk. An estimated 5.3 million tumble dryers were bought in the UK over the time period. Originally, and even after several fires were confirmed as being caused by faulty devices, Whirlpool advised customers that using such devices was safe provided they were not left unattended but would not issue a product recall. Whirlpool offered to fix faulty machines or replace tumble dryers at a cost of £99 – an offer met with derision with consumer groups and in the press. Parliament discussed widespread difficulties with getting faulty machines fixed or replaced, including long wait times and poor service.”

Max’s replacement Sam, a Samsung MS23K3515AW purchased for NOK 900, has arrived in Inderøy. We have spent some time learning how to operate Sam. We are looking forward to working with him to serve our modest microwaving needs in the coming years: reheating food/ beverages and defrosting. Sam is originally from Malaysia.