The Charm of an Einride T-pod

The world premiere of an Einride T-pod, a level 4 autonomous, electric vehicle with a mass of 26 tons, on a public road in Jonskjöping, Sweden. 2019-05-15. Photo: Einride.

Robert Falck, a former Volvo executive, is founder and CEO of Einride. Together with, Jochen Thewes, CEO of DB Schenker, a major logistics company, and Mats Grundius, CEO of DB Schenker Cluster Sweden, Denmark, Iceland, he hosted a world premiere on Wednesday, 2019-05-15.

Einride and DB Schenker entered into a commercial agreement in 2018-04 that includes a pilot in Jönköping with an option for additional pilots internationally.

Einride’s signature product is a T-Pod truck. With a Gross Vehicle Weight of 26 tons, its most notable characteristics are its electric drive train, and autonomous driving capabilities. These two features reduce road freight operating costs by about 60 percent compared to a diesel truck with driver.

However, Einride wants more, a safe, efficient and sustainable road freight transport solution, that can reduce CO2 emissions by up to 90 percent

The T-Pod is level 4 autonomous, the second highest category. It uses a Nvidia Drive platform to process visual data in real time. An operator, sitting anywhere in the world but most probably in Jonsköping, can supervise and control up to 10 vehicles simultaneously. The T-Pod has permits from the Swedish Transport Agency to make short trips – between a warehouse and a terminal – on a public road in an industrial area in Jonkoping, located in central Sweden, at speeds of up to 5 km/h.

In 2018-11, Einride and DB Schenker initiated the first installation of an autonomous, all-electric truck or “T-pod” at a closed DB Schenker facility in Jönköping. It was the first commercial installation of its kind in the world.

On 2019-03-07 the Swedish Transport Agency concluded that the T-pod is able to operate in accordance with Swedish traffic regulations. On 2019-03-11, the agency approved Einride’s application to expand the pilot to a public road, within an industrial area – between a warehouse and a terminal. The permit is valid until 2020-12-31.

Since Einride is primarily a software and operations company, they are seeking a partnership with a truck manufacturing company.

Falck said Einride would apply for more public route permits next year (2020). It was also planning to expand to the United States.

For further information, see: https://www.einride.tech/

Methane vs Electricity

The Solar (and battery) powered Sion EV, to be made by Sono Motors at the former Saab car plant at Trollhatten, Sweden. A more environmentally friendly choice than a methane powered vehicle. (Photo Sono Motors)

A study from the Munich-based IFO Institute for Economic Research, claims that battery electric cars are dirtier than those that are diesel powered. It proposes methane based, hydrogen vehicles. This study is significantly flawed.

IFO is an acronym from Information and Forschung (research). As one of Germany’s largest economic think-tanks, it analyses economic policy and is widely known for its monthly IFO Business Climate Index for Germany. Its research output is significant: about a quarter of the articles published by German research institutes in international journals in economics in 2006 were from IFO researchers. Unfortunately, I have been unable to find more recent data to support this claim. According to the Frankfurter Allgemeine Zeitung ranking, it is also Germany’s most influential economics research institute.

Part of the problem is the recycling of disproved research. The claim promoted by ICE (internal combustion engine) automakers and the fossil fuel industry, is that electric vehicles are worse for the environment because they are powered by dirty electricity.

Studies looking at overall emissions based on electricity generation have debunked this and showed that electric cars are cleaner and becoming cleaner as renewable energy is becoming an increasingly more important part of the electric grid. Previous studies have shown that EVs are cleaner than diesel no matter which European grid electricity is used.

The new twist in the new report, is that EVs use significant amounts of energy in the mining and processing of lithium, cobalt, and manganese, which are critical raw materials for the production of EV batteries.

The major error here, is an assumption that EV batteries become hazardous waste after 150 000 km or ten years. This is untrue. First, 150 000 km is shorter than the warranty period for an EV battery, which is generally 160 000 km.

There are requirements in place throughout Europe for the recycling of batteries. Even in a depleted state, they are valuable because lithium is a scarce resourse. Lthium ion batteries are not considered hazardous waste, although lead acid batteries are, because of the lead.

Cobalt and manganese are also recycled.

The study also concludes that methane-powered gasoline engines or hydrogen motors could cut CO2 emissions by a third and possibly eliminate the need for diesel motors. Again the conclusions are not matched by the facts.

Most hydrogen is produced using steam-methane reforming, a production process in which high-temperature steam (700°C–1,000°C) is used to produce hydrogen from a methane source, such as natural gas. Methane reacts with steam under 3–25 bar pressure in the presence of a catalyst to produce hydrogen, carbon monoxide, and a relatively small amount of carbon dioxide. Steam reforming is endothermic, heat must be supplied to the process for the reaction to proceed.

This is followed by a water-gas shift reaction, where carbon monoxide and steam are reacted using a catalyst to produce carbon dioxide and more hydrogen. In a final process step called pressure-swing adsorption, carbon dioxide and other impurities are removed from the gas stream, leaving essentially pure hydrogen. Steam reforming can also be used to produce hydrogen from other fuels, such as ethanol or propane.

Steam-methane reforming reaction
CH4 + H2O (+ heat) → CO + 3H2

Water-gas shift reaction
CO + H2O → CO2 + H2 (+ small amount of heat)

The production of 1 ton of hydrogen produced 19 tons of CO2.

Hydrogen can be produced through other processes, including the partial oxidation of methane, and the electrolysis of water. Neither is in significant use.

While Germany currently uses more coal power than most of Europe, it is cleaning up more quickly than most. By 2030, 2/3 of its energy will be provided by renewables. This was not considered in the study.

Other mistakes arise from using the flawed NEDC driving cycle. This gives unrealistically optimistic numbers for diesel emissions, and unrealistically pessimistic numbers for electrical emissions.

One of the most significant mistakes involves the comparison of the full production and lifecycle emissions of an electric vehicle, including the emission from the electricity uses, versus those for a diesel vehicle. Unfortunately, the study does not account for all the energy used to produce the diesel and supply it to the cars.

The German auto industry has under-reporting diesel emissions, going so far as to install cheat devises on vehicles. These emissions have caused thousands of deaths, something that billions in fines cannot compensate.

Fossil fuel extraction requires large amounts of energy, machinery and in many cases has detrimental effects on the environment. A Canadian favourite, tar sands oil, requires strip-mining tar mixed with sand, this has to be liquified and cleaned for transportation. Then there are transportation costs including tanker grounding, railcar derailments and pipeline leaks, all resulting in massive environmental damage, including ground water contamination.

The Charm of a Nobe

A Nobe 100. Who needs more than three wheels? (Photo: Nobe)

The Nobe is 99% nostalgia, 1% practical motoring.

There are many different ways to judge technology. In looking at the Nobe’s electric design, it successfully plays on the strings of nostalgia. Of course it is a technologically advanced three-wheel drive battery electric vehicle. Designed and made in Tallinn, Estonia.

A nostalgic interior, with electric windows and air conditioning, but without airbags. (Photo: Nobe

In their mission statement, Nobe writes that they want to change people´s perceptions as well as their driving habits to finally make the electric car cool. They want to cross-wire rational analysis with emotions.

Their three-fold goal is to make the Nobe upgradeable, recyclable and sustainable, ending the disposable car. First, they want to make it easy for customers to upgrade their batteries, motor and electronics. Second, they want exterior panels to be swapable and recyclable. Third, they will never take/ send a Nobe to a scrapyard.

The Nobe features all-wheel drive. It is designed to grip the road and accelerate. Some versions are equipped with an optional M (muscle car) switch for increased power. The Nobe is equipped with dual batteries. The main battery puts power into each of the three powered wheels. A separate battery provides power for the supporting systems such as light, heat and entertainment.

When I first saw a Nobe, I found it an attractive vehicle. Since then, any thrill in the design has faded away. Of course the values expressed in the mission statement are admirable. Would I buy a Nobe? I don’t think so. Three wheels are only suitable for flatlands, Estonia or Michigan, not Norway or British Columbia.

When I look back at the 1960s, and at the height of my interest in cars, I was most interested in a white, second choice red, Triumph TR-4A. It was a road machine, suitable for the moutainous yet paved highways of British Columbia.

These days, a road machine has only limited appeal, if only because of its harsh yet functional suspension. In terms of sports cars, I am more attracted to a yellow or green Sunbeam Alpine that offered a softer ride, and more especially the 1964-5 Series IV, that featured a new rear styling, with more modest tailfins. It is pure nostalgia, a reminder that my first car was also made by Rootes Group, a Hillman Minx convertible.

I don’t have to buy a Nobe, a Triumph or an Alpine. In my dreams, I can drive any car I want, and it costs me nothing. Even the insurance, the fuel and any repairs are free. A bargain.

A Sunbeam Alpine IV at Horsted Keynes in 2012. Photo: Andrew Bone

The Nobe 100 has the following specifications:

Vehicle class: L5e – powered trike

Chassis: Steel tubing

Suspension: GAZ Gold Pro, custom

Body: Nextene, soundproof

Main battery: 21 kwh Li-On- or 25 kwh Li-On (GT)

Mobile battery: 4 kwh Li-On- or 5 kw Li-On (GT)

Range: 260 km combined: 210 on main 21 kwh battery, 50 km on additional, portable suitcase battery, or 310 km combined: 260 km main battery + 50 km on portable with 25 kwh battery.

Top Speed: 130 km/h

Engine: Three in-wheel electric motors, combined max power 76 kw

Drive: three-wheeled drive

Weight: 590 kg

Acceleration: 0–100 km/h 5,9 sec

Nobe has two doors, three seats and on the GT version, a removable Targa hardtop. The interior has Belize veneer details and brushed steel.

Hood ornament: the Foxy Lady.

The Foxy Lady. (Photo: Nobe)

Kaiyun Pickman

The Kaiyun Pickman is a Low Speed Electric Vehicle, aka Neigbourhood Electric Vehicle.

Wang Chao is an optimist. The founder of Kaiyun Motors hopes to transition owners of Ford F-150 pickups over to a Kaiyun Pickman. The Pickman is now NHTSA-approved for sale in USA and equivalently approved in Europe, where it is being sold in Germany and Italy.

While reports on the vehicle in January 2019, stated that it would cost $5 000 in USA and €5 000 in Europe, the American price had escalated to $9 000 by the middle of February, for a street-legal version; about $6 000 for a farm version.

While there must be caveats about the lack of safety features, the Pickman is undoubtedly an appropriate farm vehicle in rural environments, and a suitable vehicle for urban tradespeople. It is inappropriate for a daily commute involving any form of highway driving.

The Pickman is an example of a Low Speed Electric Vehicle, ususally referred to as a Neighborhood Electric Vehicle (USA) or Quadricycle (Europe). These are defined by limitations in terms of mass (weight), power and speed. All quadricycles must have a top speed of 45 km/h or less. In USA the limit is usually 25 mph or 40 km/h. In Europe, there are two categories: light quadricycles (L6e) and heavy quadricycles (L7e). A L6e EV must have a curb weight of 425 kg or less, and an electric motor producing 4 kW or less. A L7e EV must have a curb weight of 450 kg or less (passenger vehicles) or 600 kg or less (goods vehicles), The load capacity must be 200 kg or less (passenger vehicle) or 1000 kg or less (goods vehicle), with a maximum net engine power of 15 kW or less. .

The Pickman is powered by a 4 kW permanent magnet based electric motor with an asynchronization intelligent controller, mated to a 72V lead-acid battery pack providing 100 Ah or 7.2 kWh (26 MJ) of energy. Top speed is 45 km/h and range is 120 kilometers. There is some discussion about the load capacity. Some figures, in the table below are taken from a Chinese version, which appears to have a load capacity of 300 kg. The accuracy of the figures below is not guaranteed!

Specifications for base 2019 modelsPickmanF-150
Length/ mm3 2455 316
Width/ mm (excluding mirrors)1 3202 029
Height/ mm1 4601 918
Wheel Base/ mm2 0783 109
Ground clearance/ mm150 224
Load capacity (including driver/ passengers)/ kg500846
Curb weight/ kg6802 008

Note: Curb weight is the total weight of a vehicle with standard equipment, all necessary operating consumables such as motor oil, transmission oil, coolant, air conditioning refrigerant, and a full tank of fuel, while not loaded with either passengers or cargo. Note: In Europe, the mass of the batteries is excluded when determining vehicle curb weight.

Renault K-ZE

The interior of a Renault City K-ZE.
The modernist interior of a Renault 4.

A Renault K-ZE is being considered as an electric vehicle. One headline explained it all. “New Renault City K-ZE revealed in Shanghai as cheap electric SUV.” Yes, the operational word is cheap. This is not the only operative word in my automotive vocabulary. Safe, electric and autonomous are also important words. Tall is also important, as in 1 600 or higher vehicle height. However, tall is also important in terms of ground clearance in a snowy, poorly plowed landscape. Here, 180 mm (as in K-ZE) sound much more impressive than 120 mm (as in Zöe).

The K-ZE will not be available in Europe before 2021, at the earliest. Between now and then, there will be a lot of different EVs to consider, including the following already available: Kia e Niro, Kia Soul, Hyundai Kona, Renault Zöe, Citroen e Mehari, as well as the proposed Volkswagen I.D., Buzz and Buggy. If the range of a Citroen Berlingo could double beyond its current 170 km, it would be close to the top of the class. The same could also be said about the Renault Kangoo. The Nissan Evalia/ e NV200 gets slightly better range, but is much more expensive, eliminating it from the list of potential products.

Note: Some people may mistakenly believe that a Citröen 2CV represents my ideal car. This has never been the case. I much prefer utility vehicles such as the 2CV AZU Fourgonnette panel van, and its successors, the AK 400 Fourgonette, and the Acadiane. My interest stops there, avoiding the C15 entirely, and beginning again with the Berlingo.

When I looked at the interior of the Renault K-ZE, I focused my attention on the number of actuators (buttons) a driver would have to press, turn or otherwise manipulate. In contrast to many current cars, there seemed to be few. In many respects, European economy vehicles such as a Fiat 600 Multipla, Hillman Husky, Morris Minor 1000 Traveller, Renault 4 or even a slightly less practical but more popular Volkswagen Beetle of the 1960s have always represented a personal gold standard in terms of actuator manipulation.

While the K-ZE is based on the Renault Kwid, dimensions of the new vehicle have not been released, so Kwid dimensions have been used in the table below.

SpecificationK-ZE (Kwid)Zöe
Length/ mm3 6794 084
Width/ mm1 5791 730
Height/ mm1 5131 562
Ground Clearance Unladen/ mm180120
Wheel Base/ mm2 4222 588
Cargo Volume/ litres300338
Passengers55

Currently, the Renault Zöe costs NOK 215 000 (which is about the equivalent of USD 26 000/ CAD 36 000). This includes NOK 15 000 for the installation of a battery charger. The range of the Zöe is 240 km, and the expected range of the K-ZE is 250 km, both calculated using the NEDC-cycle. It is stated that the K-ZE will cost less than the Zöe.

Range is not a major consideration. The vehicle would have to have an ability to make a weekly run to pick up supplies in Straumen (13 km away = 26 km round trip), Steinkjer (35 km away = 70 km round trip) or make a day trip out to the coast. Yesterday’s daytrip to Ørlandet was 317 km. In the future, this might have to involve an overnighting, because of charging challenges. However, this fact makes vehicles with a longer range more attractive.

Normal charging at home (AC) was a challenge for Zoe, and could create problems for the K-ZE, since the vehicle could only be charged on a TN-net (400V 3-phase). This challenge was partly solved by providing a dedicated charging box and associated separator (which in essence “converts” 230V 1-phase to 3-phase).

Another aspect of this problem, has been solved by the Stavanger company Zaptec AS, that developed a small charging cable, with a built-in separator. With this, a Zoe can be charged without problems. The charging power is 10A with this cable.

NORMAL CHARGING: Charging with 2.3 kW / 10A takes 20 hours / 3.6 kW / 16A takes 12-13 hours / 11 kW / 16A (3-phase) takes 3 hours and 20 min / 22 kW / 32A (3-phase ) takes an hour and 40 minutes. QUICK CHARGE: The Zöe should be able to load 0-80 percent in less than an hour in the summer (with 43 kW AC found in a few places), but can take much longer in the winter. DC quick charging is not possible.

The exterior of a Renault K-ZE.

Stylists

The new Nuno R1 autonomous delivery vehicle has arrived, and if all goes well, it will soon be making grocery deliveries from Kroger to a house near you. Not near me, unfortunately, as the distance to my closest Kroger store is measured in thousands of kilometers.

Nuro R1 Autonomous Delivery Vehicle (Photo: Nuro, 2018)

While the Nuro may have OK styling, its design is not great. Take the hinged (gull-wing?) door openings. They are much wider and thus heavier than necessary to provide full access to the storage areas. There is no reason for these doors to open as widely as the do. The vehicle rakes, unnecessarily, front and back. Why isn’t this area being used to house navigational equipment, instead of the centre of the vehicle, which could be designed to include more storage space?

In contrast, here is my own attempt at a delivery vehicle design that does address some of these issues, although the purpose of this vehicle is transport of building materials, rather than groceries. Even the colour is an improvement on dull beige-brown.

Autonomous delivery vehicle for construction materials, with vehicular control mechanisms at body ends. Battery pack is located under floor.

There are too many stylists at work, masquerading as designers. In the 1950s,  stylists knew they were stylists.

1957 Ford Fairlane 500 Club Hardtop at weekly Garden Grove, California car show 2004-05-14. (Photo: Morven CC-BY-SA-3.0)

Nineteen Fifty Seven represented a high point for American car styling, but not for car design. This is seen particularly in low-end brands, such as Chevrolet, Ford and Plymouth. In contrast,  facelifted 1958 models are regarded with less esteem, although not quite as low as the 1959 models.

The 1957 Fords were all about styling, one that dramatically changed passenger car appearance the most since 1949. There were 20 different models, on two separate wheelbases. Body styles included two- and four-door sedans, hardtops, wagons, a convertible, a retractable hardtop and a sedan/pickup. These were all available in more colors and two-tone combinations than ever before. There were six engine options, five of them V-8s.

The challenge with making so many different products is that there is no place for design. I will not be buying a 1957 Ford, or any other heritage car. They are just too impractical – too low, too long, too extreme in styling language.

There is a similar situation in the world of fashion. Fortunately, in my world many of my outer clothes, especially shirts and socks, are bespoke. Material is selected specifically for each garment, sleeve length is cut perfectly, each shirt has two pockets, buttons are placed where I want them. Not every man, has a wife who has such abilities and interests. Without being too disparaging, I would say that I have one shirt design, that is then styled to meet specific requirements in each garment.

There may be a few more variations on designs for chinos and jeans, but most of these differ only in terms of their styling. I have learned to live with a particular off the rack style of chinos. They come in more or less standard design, with components that can be traced back to the 19th century. The original watch pocket has been repurposed many times. A Levi-Straus blog comments about many of these same components in jeans:   http://www.levistrauss.com/unzipped-blog/2014/04/17/those-oft-forgotten-pant-parts/

Electric Car Charging

Everyone is on familiar terms with the watt, with the possible exception of American muscle car owners addicted to horse power. To help them enter a world free of fossil fuel, all they need to do is make a simple, if slightly inaccurate, calculation: 1 HP = 750 watts.

If one uses 1 watt for 1 second, then the amount of energy used is 1 joule (J). There are many other, but more confusing, ways to explain this energy transfer: the force of 1 (N) newton acting on that object through a distance of 1 (m) metre; (In electrical terms) the energy of 1 (A) ampere passing through a 1 (Ω) ohm resistor, with a voltage drop of 1 (V) volt, for 1 (s) second.

To be true to the SI system, the battery pack on your favourite vehicle should be expressed in joules, in precisely the same way that the power you purchase from your household electrical supplier, should also be expressed in joules. Instead it is expressed in an illegitimate kilowatt hours where 1 kWh = 3600seconds/hour x 1000 W/kW joules or 3.6 (MJ) megajoules.

The standard size of an EV is quickly approaching 60 kWh = 60 x 3.6 = 216 MJ.

The limiting factor in most houses with respect to charging, is the thickness of the electrical wires. In general wiring requires cable with the following characteristics: 10A = 1.5mm2; 16A = 2.5mm2; 20A = 4mm2; 32A = 6mm2; 40A = 10mm2; 50A = 16mm2; 63A = 25mm2. Electrical input to Cliff Cottage uses 230 V, 3-phase, 25mm2 wiring, which provides a maximum of 25 kW of electrical power to be used for everything and anything, including EV charging.

 

Standards

Details about charging EVs are contained in several standards, including IEC 61851 and IEC 62196.

IEC 61851 Electric vehicle conductive charging system specifies general characteristics, including charging modes and connection configurations, and requirements for specific implementations (including safety requirements) of both electric vehicle (EV) and electric vehicle supply equipment (EVSE) in a charging system.

IEC 62196 Plugs, socket-outlets, vehicle couplers and vehicle inlets – Conductive charging of electric vehicles is based on IEC 61851.

The IEC 62196 Type-2 connector (Mennekes) is used for charging electric cars within Europe. The connector is circular in shape, with a flattened top edge and originally designed for charging at between 3 and 120 kW, using either single-phase or three-phase alternating current (AC), or direct current (DC). In January 2013 it was selected by the European Commission as official charging plug within the European Union. It is also the official charging plug in Norway. There is a transition period until 2020, which will allow other charging plugs to be used.

At the moment there are only three vehicles that use this plug as standard in Norway, Tesla Model S (up to 22 kW), Renault ZOE (up to 43 kW) and Mercedes-Benz B-Klasse (up to 11 kW). Because the requirements are more stringent for these chargers, Renault includes the electrical installation of its residential charging system in the price of the vehicle.

Norwegian requirements for charging of EVs have been specified in the following document (in Norwegian): https://www.dsb.no/lover/elektriske-anlegg-og-elektrisk-utstyr/tema/elbil—lading-og-sikkerhet/

While other makes and models currently use other charging systems. As new models are introduced, they will increasingly use Type-2 charging as standard. However, it is interesting to see that the Hyundai Ioniq and the Opel Ampera-e, both introduced in 2017, both come equipped with Combo CCD (DC) charging cables.

With Type-2 charging, the electronics is in the charging station (Mode 3) instead of in a box attached to the charging cable (Mode 2).  This makes the cable cheaper to  purchase and easier to handle. The contact is more robust, with minimal electrical, heat and fire risks.

Type 2 charger cable (photo: Ståle Frydenlund)

Charging cables are needed in different variants depending on the electric car. At one end of the cable there will be a Type 2 connector to plug into the charging station. The other end has a contact designed for the specific electric car. Type 1 for Nissan, Mitsubishi, Kia, Peugeot and Citroën; Type 2 for BMW, Volkswagen, Tesla and Renault.

Charging Key and Chip

Access to charging stations is restricted, to prevent abuse. Most commonly access is dependent on the use of a standard key, or a chip. At most charging stations in Norway, use is free. Yes, that is correct. Vehicles gets filled up with electricity free of charge.

Because membership is included with most new EV purchases, it is standard practice for Norwegian electric car owners to be members of the Norwegian Electric Car Association (Norsk elbilforeningen) which, in addition to other services, provides members with both  a charging key, as well as a charging chip, to give them access to charging stations throughout the country. While the key is used with most older charging stations, newer ones rely increasingly on a charging chip. Note: the charging chip will not work until it is registered with the individual charging operator!

 

The Charm of a Bison

In a recent market survey undertaken by members of my immediate family, I discovered that not all aesthetic values are genetically inherited. Rather than being sad, this insight has given me the opportunity to explore new vistas. If people are not interested in revisiting sardine roles, sitting in a mini-van for days or weeks at a time, meditating on the spruce trees of Northern Sweden, I too can abandon the mini-van, and opt for something that reflects my new essence – the workshop activist.

So it is going to be, Au revoir, Berlingo! Hi, Bison! (or if I follow up what I wrote a few weeks ago, Hallo, StreetScooter Work!)

I have had relationships with pickups before. The very first vehicle I drove, in the very early 1960s, aged about twelve, was a Chevrolet Pickup belonging to Harry Raymer, in some fields in Okanagan Mission, near Kelowna, British Columbia, Canada. Later, in the early 1970s, I drove Ernie Jickles – whose eyesight was failing and was not allowed to drive – around in his wife’s Ford Courier pickup, so we could  photograph. The Courier was a rebadged Mazda B-1800. In the late 1980s, in Inderøy, I drove a Nissan pickup working on a lafted house project out in Malm.

A 1972 Ford Courier, a rebadged Mazda B-1800. The one I drove was light blue in colour, and belonged to the Jickles family, of New Westminster. (photo: Mr.choppers, 2014)

Forget the past. Today’s story is set in the future, about the Bison, a Dutch-Canadian electric pickup. The primary characteristic it attempts to portray is rugged durability. That’s almost how I describe myself, as do about 90% of the adult male population.

I’m not sure if it is a corporate, or a product motto, but LEADING THE CHARGE™ has both electrical, and military connotations. It also describes itself in terms of three other characteristics: power, precision, strength.

Characteristics of the Bison pickup, I think I understand:
1300 liters of exterior cargo space and 510 liters of lockable storage. Safest truck with carbon fibre reinforced steel space frame. Full electric AWD built for severe weather conditions. High-current power socket for all your tools. Advanced vehicle intelligence and connectivity. Zero emission driving and zero pollution. Dual-motor electric powertrain. Advanced telemetry.

Characteristics, I know nothing about:
Rugged off-road capabilities with 54% hill start and 21% hill climb. I guess this is important, because I live on a hill, but have no idea what it means beyond being able to start off on a hill. Yes, I am too lazy to google it.

Somewhere in between: Class-leading torsional stiffness for enhanced durability and handling. I know what stiffness is, but I thought one invested in a suspension system in trucks to softened up that stiffness.

I would like a person, or even a designer, to read the following paragraph, and tell me that it actually means something that I can use to impress friends: “The Bison speaks a bold design language, punctuated with angular cladding and wedge profiles. An evolutionary leap forward from traditional pickups, the Bison delivers a more modern and provocative approach. With short overhangs and tires pushed to the corners, the stance conveys stability and confidence allowing for aggressive approach and departure angles.”

Included for your visual enjoyment are photographs from the Bison website: http://www.havelaarcanada.com/bison/

Trell 2

The Past

Back in 2014, I outlined an electric vehicle, Trell, that could be made by inmates at Verdal prison, where I worked teaching technology and associated subjects. Trell was mainly a pedagogical vehicle, but if actually built, could be used to solve a number of transportation challenges at the prison. A blog post on the original Trell will be published in the future.

The Present

Now it is 2018, and I see a need for an battery electric autonomous truck emerging.

Let’s begin by qualifying that statement, by examining it word by word.

Battery: While a battery may be needed for last kilometer situations, there is no reason why electric vehicles have to store significant quantities of energy onboard. It only adds to vehicle weight which increases capital and operating costs. The term dynamic wireless charging is often used.

Electric: This vehicle will be electric powered. Electric motors are preferred because they generate maximum torque even while stopped.

Autonomous: All contact with the vehicle will be through electronic devices sending and receiving encrypted messages. This vehicle will not require a driver. In fact, there is no space on board for a driver. Using the Society of Automotive Engineers’ levels for automated driving systems this vehicle will have to be at either level 4 or level 5. At level 4 vehicles are “designed to perform all safety-critical driving functions and monitor roadway conditions for an entire trip.” It is limited to the operational design domain (ODD) of the vehicle, which is an incomplete set of driving situations. At level 5 this ODD restriction is removed and the vehicle’s performance to expected to equal that of a human driver, in every driving situation including extreme environments, like snow covered roads.

At this prototype stage there is no need for a functioning autonomous vehicle. Many prototypes lack drive trains entirely. A compromise will be fitting the vehicle with remote control equipment, so that the entire movement of the vehicle is under the control of a living human being.

Truck: This vehicle is to be used for the shipment of goods. Minimum cargo capacity is arbitrarily set to LxWxH 2 500 mm x 1 250 mm x 1 000 mm. No people will be transported under any circumstances.

bty
Conceptual sketch of a Trell 2 Battery Electric Autonomous Truck

The Trell 2 is inspired by the Subaru Sambar more than any other vehicle. The vehicle is designed to transport bulky materials. Target materials are plywood and other construction material sheets. This would require a vehicle design width of 1 600 mm, which includes 50 mm on each side for side doors that open upwards into the roof. The doors would be 2 500 mm long and 1 000 mm high. The vehicle would have a length of 3 500 mm of which 2 500 mm would dedicated to cargo. This is fitted with one door along each side. At both ends of the vehicle 500 mm is used to make an aerodynamic front and rear end. Most of this volume would also be available for transporting goods.

The Future

This is far too big a project for me to work on alone. Or more correctly, I have so many other projects that I am interested in, I can’t devote all of my energies to a time thief like this. However, I see it as an opportunity to work with several others at the new Hastighet = Velocity workshop in Straumen.

The first recruitment session will be at the annual meeting of the local Friends of the Earth group, at the end of February. Once vehicle specifications have been agreed upon, I imagine a prototype could be built using components from scrapped vehicles. EVs for drive train components, smaller pickups (such as a Subaru Sambar) could provide many useful parts.

This weblog post was updated 2021/12/21. to eliminate Seeds from the title. This post formed part of a Needs, Seeds and Weeds website that belonged to my daughter, Shelagh. In addition, other things are also out of date, or my opinions have changed. Apart from the title, updating the text to a block format and other minor formatting changes, the text above this paragraph remains as it was before. Any significant content changes are found below this paragraph.

Volkswagen vs Street-scooter

Exit Volkswagen!

Volkswagen Tofino
Volkswagen AG, much like this van, is no longer fit for purpose. Photo by Sean Maynard 2009-08-04 at Tofino Botanical Gardens.

I was looking forward to driving (if not owning) an electric Volkswagen Buzz. This is no longer the case. I can no longer support the immorality of Volkswagen. Volkswagen AG is no longer fit for purpose.

First, there is the Dieselgate scandal involving 11 million cars that produced more NOx pollution than authorized, harming human health and killing thousands. Volkswagen’s actions were clearly immoral.

Second, Volkswagen lead experiments on 10 macaque monkeys to test the health impact of exposure to nitrogen dioxide (NO2) in 2014. Again, Volkswagen’s actions were clearly immoral.

Third, Volkswagen partially funded an automotive lobby group that tested the effects of NO2 exposure on 25 healthy young people. This was in 2015. For yet a third time, Volkswagen’s actions were immoral. At this revelation, I have reached my breaking point.

In Europe, Volkswagen is not paying fines, and executives do not seem to be going to prison. So, if government cannot be trusted to punish Volkswagen, at least to the extent of the damage it has deliberately caused, then consumers will have to take matters into their own hands.

Volkswagen will have to be boycotted for at least ten years. The start date for this ten years should be the last date when illegal/ immoral behaviour was revealed. At the moment this means a boycott at least until January 2028.

Volkswagen probably should have been dissolved as a company, and had its assets impounded.

Enter Streetscooter!

Consumers are not the only ones annoyed at Volkswagen, but for different reasons, although perhaps both are grounded in Volkswagen’s arrogance. Much to the annoyance of Volkswagen, Deutsche Post has designed and built its own electric delivery van.

These vehicles allow Deutsche Post to meet demand for e-commerce deliveries without adding to air pollution in German cities. They also replace conventional Volkswagen vans.

Deutsche Post became a manufacturer when conventional vehicle makers turned down requests to build electric delivery vans, in limited numbers by automotive sales standards.

Volkswagen CEO Matthias Mueller is quoted as saying, “I am annoyed beyond measure. I, of course, ask myself why Post did not talk to our VW Commercial vehicles division about doing something similar.” Unfortunately, that comment misses the truth, Volkswagen were asked, but declined.

Deutsche Post bought electric-vehicle manufacturer StreetScooter in 2014, where they use over 5 000 vans and 2 200 bicycles (and tricycles).  The goal is to operate only battery-powered models. In addition StreetScooter is about to sell products to third parties, like bakeries and airports.

Advances in CAM allow almost anyone to use potential parts suppliers to design, engineer and test new vehicle concepts. There is no need for a large staff of engineers, or invests in tooling and factories. This transition by first undertaken by brand name automotive companies to keep their own costs down after the global financial crisis, starting ten years ago in 2008. They farmed out research and development relating to parts and sub-assemblies. Thus, it is not the brand names that own technical and engineering expertise, but increasingly a network of suppliers. In 2018, these produce components that constitute 80 percent of a vehicle. This contrasts with about 56 percent 30 years earlier. This is a perfect situation for new entrants, such as Google and Streetscooter.

Win Neidlinger, director of business development at Streetscooter GmbH, told Reuters, “We are purposely not reinventing the wheel. We do not produce a single component ourselves. Everything comes from a supplier.”

Parametric Technology Corporation is a bit difficult to say, so it is a good thing that they have changed their name to PTC. Windchill software, made by PTC, costs 300 to 1,000 euros per user per year. It is used by 90 percent of the top 50 automotive companies. It is also used by Streetscooter to communicate with a network of 80 suppliers.

Software systems are becoming more accessible, because automakers, after spending years and millions to customize in-house development programs, have begun switching to standard systems. This is necessary to access their network of suppliers. Open architecture, interfaces and standards have all become part of an industry launched code of conduct for product lifecycle management.

Deutsche Post knew that with increasing e-commerce orders, increased inner city delivery trips would mean increased pollution, unless it switched to zero-emission vehicles.

Electric vehicles are simpler in design than internal combustion engine cars require only 10% of production staff during assembly. This dramatically lowers production costs. Neidlinger adds, “We designed it as a tool. So the fit and finish does not need to be as good as in a passenger car.” The vans are designed to last 16 years, operate six days a week, for 10 hours at a time. Some components need to be particularly robust. Doors are expected to be opened and closed 200 times a day.

The StreetScooter Work introduced in 2015 is equipped with 20.6 kW /h lithium-ion battery packs and is powered by asynchronous electric motors, The peak/continuous output is stated as 48 /38 kW and 130 Nm of torque. The range is said to be 118 km (NEFZ) or 80 km (Deutsche Post approved), but this depends on the load weight, traffic and environmental conditions. This distance is possibly adequate in inner cities, but little short for use in rural areas. Charging to 80 percent takes 4.5 hours, a full charge takes 7 hours, using a Schuko socket with 230 V and 16 A maximum. The load capacity is 710 kg. Internal cargo volume is 4.3 cubic meters. The body structure is made of steel and the exterior panels are made of structural plastics. Its unladen weight is 1 420 kg, with a total weight of 2 130 kg. It is fitted with ABS brakes and has a driver’s airbag. Dimensions L/B/H of the pickup version in mm are: 4 649 / 1 805 / 1 840. Deutsche Post board member Juergen Gerdes told Reuters, “It did not cost billions to develop and produce. You will not believe how cheap it is to make.”

streetscooter work pickup
With a vehicle like this Streetscooter Work pickup, I could enter the world of real men, but in an environmentally more sustainable way. Of course, real sustainable people don’t buy vehicles. This vehicle is in my preferred colour. (Photo: http://www.spijkstaal.nl/)

Compared to a Volkswagen Caddy that this vehicle replaces, there is an environmental saving of 3 tons of CO2 per year. With electric motors the total cost of ownership is no more expensive than an equivalent ICE van.

In September 2016, Deutsche Post presented a larger version, designated StreetScooter Work L, which has 8 cubic meters of space to carry up to 150 parcels weighing a total of 1,000 kg.

Enter Ford!

In July 2017 serial production started in Aachen for Work XL, based on a Ford Transit. Batteries are modular, between 30 and 90 kWh, given a range of between 80 and 200 kilometers. The charging time is around three hours at 22 kWh. Plans are to produce 2 500 electric vehicles. This would save 12 500 tonnes of CO² and 4.75 million liters of diesel. The Work XL has 20 cubic meters of cargo space for over 200 parcels.

The production of these vehicles makes Deutsche Post and Ford the largest producer of battery electric medium-heavy delivery vehicles in Europe. “I regard this partnership as a further important impetus for electric mobility in Germany,” says Jürgen Gerdes. “The move underscores Deutsche Post’s innovation leadership, it will relieve the inner cities and improve people’s quality of life, and we will continue to work on completely CO2-neutral logistics!”

Ford is probably the best placed company to work with Deutsche Post. First, the Work does not threaten Ford’s F-series of light and medium duty vehicles, which are the best selling models in both the United States and Canada. It doesn’t threaten the Ranger series either, although if the Work proves successful, there could be lost sales, here. Second, an electric Work would supplement Ford’s offerings, and attract new, electric oriented buyers.

Third, delivery vehicles are especially important for their signal effect. These are seen by the public daily. There are five positive characteristics that the Work can signal: a) range confidence; b) low operating costs; c) durability; d) operator safety; and e) environmental suitability.

I will end this post with an appeal to any readers who have connections with Ford. If Ford wants someone to evaluate the suitability of a Work in Scandinavia I would happily volunteer, especially if I could get the vehicle at reduced price. Yes, there should be seating for three, with each given appropriate airbags. Yes, it should be able to pull a 1 200 kg trailer.

Notes:

https://www.theguardian.com/business/2018/feb/04/volkswagen-shocking-behaviour-punish-consumers-must-punish-it

http://europe.autonews.com/article/20180117/ANE/180119731/ford-ready-to-help-electric-mail-vans-go-global

https://www.streetscooter.eu/wp-content/uploads/2017/05/STSC_Datenblatt_GB_WORK_Pickup_92017.pdf

Weiss, Richard (24 March 2017), “Even Germany’s Post Office Is Building an Electric Car”. Bloomberg. “Even Germany’s Post Office Is Building an Electric Car. When Deutsche Post AG couldn’t find a zero-emission delivery van that met its needs, it bought a startup and developed one. Now Europe’s largest postal service may start selling those vehicles—dubbed StreetScooters—to others, showing the potential for disruption in the rapidly changing auto market.”

This weblog post was updated 2021/12/21. to eliminate Weeds & Seeds from the title. This post formed part of a Needs, Seeds and Weeds website that belonged to my daughter, Shelagh. In addition, other things are also out of date, or my opinions have changed. Apart from the title, updating the text to a block format and other minor formatting changes, the text above this paragraph remains as it was before. Any significant content changes are found below this paragraph.